PEMODELAN ARIMAX KASUS COVID-19 DIKAITKAN DENGAN CURAH HUJAN DI KOTA MAKASSAR
DOI:
https://doi.org/10.32493/sm.v4i2.25556Keywords:
ARIMAX, Covid-19, rainfall, MakassarAbstract
ABSTRACT
This research applies a quantitative modelling approach and focuses on ARIMAX modelling in the Covid-19 case associated with rainfall in Makassar City. Data were obtained from the government's official website for daily confirmed case data of Covid-19 and rainfall (from June 25, 2020 to January 15, 2022). Rainfall is measured in mm which is the independent variable ( ), and confirmed Covid-19 as the dependent variable ( ). This research objective is to obtain the best ARIMAX model that informs the effect of rainfall intensity ( ) on the number of confirmed cases of Covid-19 ( ). This best model used the criteria that all parameters are significant, the residuals involved the white noise assumption and the best criteria measured from the smallest value of Akaike Information Criterion (AIC). The best model in this study is ARIMAX(3,0,5), with the smallest AIC value of 7,220,96. The results of this study indicate that rainfall ( ) has no significant effect on the number of confirmed Covid-19 ( ) in Makassar City.
Keywords: ARIMAX, Covid-19, rainfall, Makassar.
ABSTRAK
Penelitian ini menerapkan pendekatan pemodelan kuantitatif (quantitative modelling approach) dan membahas pemodelan ARIMAX pada kasus Covid-19 dikaitkan dengan curan hujan di Kota Makassar. Data diperoleh dari website resmi pemerintah untuk data kasus terkonfirmasi harian Covid-19 dan juga curah hujan (mulai Tanggal 25 Juni 2020 s/d 15 Januari 2022). Curah Hujan diukur dalam mm yang merupakan variabel bebas ( , dan terkonfirmasi Covid-19 sebagai variabel terikat ( . Penelitian ini bertujuan untuk mendapatkan model ARIMAX terbaik yang menginformasikan pengaruh intensitas curah hujan ( terhadap jumlah kasus terkonfirmasi Covid-19 ( . Model terbaik ini memenuhi kriteria bahwa semua parameter signifikan, residual memenuhi asumsi white noise dan kriteria terbaiknya menggunakan nilai Akaike Information Criterion (AIC). Model terbaik yang diperoleh dalam penelitian ini adalah ARIMAX(3,0,5), dengan nilai AIC terkecil sebesar 7.220,96. Hasil penelitian ini menunjukkan bahwa Curah Hujan ( tidak berpengaruh signifikan terhadap jumlah terkonfirmasi Covid-19 ( di Kota Makassar.
Kata kunci: ARIMAX, Covid-19, Curah hujan, Makassar
References
Amalia, A., Zukhronah, E., & Subanti, S. (2021). Peramalan Data Inflow dan Outflow Uang Kartal Bank Indonesia Provinsi DKI Jakarta Menggunakan Model ARIMAX dan SARIMAX. Indonesian Journal of Applied Statistics, 4(2), 87. https://doi.org/10.13057/ijas.v4i2.45673
Andrews, B. H., Dean, M. D., Swain, R., & Cole, C. (2013). Building ARIMA and ARIMAX Models for Predicting Long-Term Disability Benefit Application Rates in the Public / Private Sectors Sponsored by Society of Actuaries Health Section Prepared by University of Southern Maine. Society of Actuaries, August.
Aswi, A., Cramb, S., Hu, W., White, G., & Mengersen, K. (2020). Spatio-Temporal Analysis of Dengue Fever in Makassar Indonesia: A Comparison of Models Based on CARBayes. In Case Studies in Applied Bayesian Data Science, Lecture Notes in Mathematics (Vol. 2259, pp. 229–244). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-42553-1_9
Aswi, A., Cramb, S. M., Moraga, P., & Mengersen, K. (2019). Bayesian spatial and spatio-temporal approaches to modelling dengue fever: A systematic review. Epidemiology and Infection, 147(e33), 1–14. https://doi.org/10.1017/S0950268818002807
Aswi, A., Sukarna, S., Cramb, S., & Mengersen, K. (2021). Effects of Climatic Factors on Dengue Incidence: A Comparison of Bayesian Spatio-Temporal Models. Journal of Physics: Conference Series, 1863(1). https://doi.org/10.1088/1742-6596/1863/1/012050
Aswi, Zaki, A., & Hijrayanti. (2015). Spatial Analysis of The Spread of Tuberculosis using Local Indicator of Spatial Assocition (LISA) in Makassar, Indonesia. ICSMTR, 182–192. http://repositori.uin-alauddin.ac.id/1455/1/Proceeding ICSMTR.pdf
Castiglione, F., Mancini, E., Pedicini, M., & Jarrah, A. S. (2018). Quantitative modelling approaches. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 1–3(January), 874–883. https://doi.org/10.1016/B978-0-12-809633-8.20454-8
Ciotti, M., Ciccozzi, M., Terrinoni, A., Jiang, W. C., Wang, C. Bin, & Bernardini, S. (2020). The COVID-19 pandemic. In Critical Reviews in Clinical Laboratory Sciences (Vol. 57, Issue 6, pp. 365–388). Taylor & Francis. https://doi.org/10.1080/10408363.2020.1783198
Hossain, M. S., Ahmed, S., & Uddin, M. J. (2021). Impact of weather on COVID-19 transmission in south Asian countries: An application of the ARIMAX model. Science of the Total Environment, 761. https://doi.org/10.1016/j.scitotenv.2020.143315
Iqbal, A., & Burhanuddin, E. a. (2020). Merajut Asa di Tengah Pandemi Covid-19. In Deepublish, Yogyakarta,. Deepublish.
Khikmah, K. N. (2021). Penerapan Principal Component Analysis dalam Penentuan Faktor Dominan Cuaca Terhadap Penyebaran Covid-19 di Surabaya. ESTIMASI: Journal of Statistics and Its Application, 2(1), 11–18. https://doi.org/10.20956/ejsa.v2i1.11943
Latief, M. I., Hasbi, & Amandaria, R. (2021). Collaboration in handling COVID-19 toward people in poverty line: study case in Makassar. Gaceta Sanitaria, 35(S1), S30–S32. https://doi.org/10.1016/j.gaceta.2020.12.009
Ling., A. S. C., Darmesah, G., Chong, K. P., & Ho, C. M. (2019). Application of ARIMAX model to forecast weekly cocoa black pod disease incidence. Mathematics and Statistics, 7(4), 29–40. https://doi.org/10.13189/ms.2019.070705
Mariana, N. (2020). Coronavirus disease 2019 ( COVID-19 ) (Vol. 2019, Issue April).
Nurfitri, Yundari, & Martha, S. (2020). Pemodelan Data Runtun waktu dengan ARIMAX. Bimaster : Buletin Ilmiah Matematika, Statistika Dan Terapannya, 9(1), 129–136. https://doi.org/10.26418/bbimst.v9i1.38667
Pudjiastuti, S. R., , S., & Hadi, N. (2020). The Effect of Corona Virus on The Global Climate. JHSS (Journal of Humanities and Social Studies), 4(2), 130–136. https://doi.org/10.33751/jhss.v4i2.2456
Putri, A. A., Sanusi, W., & Sukarna. (2018). Model Regresi Spasial dan Aplikasinya pada Kasus Tingkat Kemiskinan Kabupaten Soppeng. Indonesian Journal of Fundamental Science, 4(2), 102–109.
Resha, M., Suyuti, A., Sadjad, R. S., & Niswar, M. (2019). Mapping the Pattern of Spread of Tuberculosis Cases using Spatio-Temporal Approach in Makassar - South Sulawesi. International Conference on Computer, Control, Informatics and Its Applications: Emerging Trends in Big Data and Artificial Intelligence, IC3INA, 99–102. https://doi.org/10.1109/IC3INA48034.2019.8949595
Sansom, R. S., Choate, P. G., Keating, J. N., & Randle, E. (2018). Parsimony, not Bayesian analysis, recovers more stratigraphically congruent phylogenetic trees. Biology Letters. https://doi.org/10.1098/rsbl.2018.0263
Sari, W., Siagian, I. E., & Rombot, D. V. (2021). Gambaran penyebaran COVID-19 di Provinsi Sulawesi Selatan pada bulan Maret-Juli 2020. Jurnal Kedokteran Komunitas Dan Tropik, 8(02), 307–312. https://ejournal.unsrat.ac.id/index.php/JKKT/article/view/33584
Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research, 24, 91–98. https://doi.org/10.1016/j.jare.2020.03.005
Sohrabi, C., Alsafi, Z., O’Neill, N., Khan, M., Kerwan, A., Al-Jabir, A., Iosifidis, C., & Agha, R. (2020). World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). In International Journal of Surgery. https://doi.org/10.1016/j.ijsu.2020.02.034
Sukarna, Ananda, E. Y. P., & Wahyuni, M. S. (2021). Rainfall Forecasting Model Using ARIMA and Kalman Filter in Makassar, Indonesia. Journal of Physics: Conference Series, 2123(1), 0–7. https://doi.org/10.1088/1742-6596/2123/1/012044
Sukarna, Awi, & Sutamrin. (2020). Analisis Spasial Sebaran Penyakit Menular Kota Makassar Tahun 2018. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 14(1), 113–122. https://doi.org/10.30598/barekengvol14iss1pp113-122
Sukarna, S., Sanusi, W., & Hardiono, H. (2020). Analisis Moran’s I, Geary’s C, dan Getis-Ord G pada Penerapan Jumlah Penderita Kusta di Kabupaten Gowa. Journal of Mathematics Computations and Statistics, 2(2), 151. https://doi.org/10.35580/jmathcos.v2i2.12577
Sumandiyar, A., & Nur, H. (2020). Membangun Hubungan Sosial Masyarakat di Tengah Pandemi Covid-19 di Kota Makassar. Prosiding Seminar Nasional Problematika Sosial Pandemi Covid-19, 74–81. https://ojs.literacyinstitute.org/index.php/prosiding-covid19%0AMembangun
Susilo, A., Rumende, C. M., Pitoyo, C. W., Santoso, W. D., Yulianti, M., Herikurniawan, H., Sinto, R., Singh, G., Nainggolan, L., Nelwan, E. J., Chen, L. K., Widhani, A., Wijaya, E., Wicaksana, B., Maksum, M., Annisa, F., Jasirwan, C. O. M., & Yunihastuti, E. (2020). Coronavirus Disease 2019: Tinjauan Literatur Terkini. Jurnal Penyakit Dalam Indonesia, 7(1), 45. https://doi.org/10.7454/jpdi.v7i1.415
Syahridha, S., Massi, N., Ahmad, A., & Djaharuddin, I. (2021). Associated Factors of the Results of Pulmonary Tuberculosis Treatment During the COVID-19 Pandemic in Makassar City. OAMJMS (Open Access Macedonian Journal of Medical Sciences), 9(B), 1001–1005. https://doi.org/10.3889/oamjms.2021.6742
Tenenbaum, G., & Filho, E. (2016). Measurement Considerations in Performance Psychology. In Performance Psychology: Perception, Action, Cognition, and Emotion. https://doi.org/10.1016/B978-0-12-803377-7.00003-X
Tiro, M. A., Ruliana, & Aswi, A. (2020). Eksplorasi Literasi Statistika Deskriptif Mahasiswa Program Studi Universitas Negeri Makassar dalam Suasana Pembelajaran Daring Akibat Darurat Covid-19. Seminar Nasional VARIANSI, 149–159.
Tosepu, R., Gunawan, J., Effendy, D. S., Ahmad, L. O. A. I., Lestari, H., Bahar, H., & Asfian, P. (2020). Correlation between weather and Covid-19 pandemic in Jakarta, Indonesia. Science of the Total Environment, 725. https://doi.org/10.1016/j.scitotenv.2020.138436
Vargas, J. R. N. (2020). The COVID-19 pandemic. Revista Facultad de Medicina, 68(1), 7–8. https://doi.org/10.15446/revfacmed.v68n1.86482
Wardi, I., Laksmiwati, I., Gunadi, I., & As-syakur, A. (2014). DAMPAK PERTUMBUHAN PENDUDUK TERHADAP LINGKUNGAN DAN BUDAYA SUBAK : STUDI KASUS DI KABUPATEN TABANAN PROVINSI BALI. Bumi Lestari, 14(2), 110–124.
Wijayanti, K., Martha, S., & Debataraja, N. N. (2021). Perbandingan Model Arimax Dan Fungsi Transfer Pada Peramalan Curah Hujan. Jurnal Gaussian, 10(2), 233–242.
Yulia, E., Ananda, P., Annisa, Y., & Nova, H. (2021). Pemberdayaan Desa Wisata Desa Sengkol HASIL & PEMBAHASAN. 1, 519–521.
Downloads
Published
Issue
Section
License
As an Author, you have the right to a variety of uses for your article, including institutions or companies. The author's rights might do without the need for special permission.
Authors who publish in the Jurnal Jurnal Statistika dan Matematika (Statmat) have broad rights to use their works for education and scientific purposes without permission, including:
Used to discuss in a class by the author or the author's body and presentations at meetings or conferences and participant approval;
Used for internal training by the author's company;
Distribution to colleagues for the use of their research;
Used in preparation for further author's works;
Included in a thesis or dissertation;
Partial or extra reuse of articles in other works (with full acknowledgment of the last item);
Prepare derivatives (other than for commercial purposes);
Post voluntarily on a website opened by the author or approve the author for scientific purposes (follow CC with a SA License).