PEMODELAN ARIMAX KASUS COVID-19 DIKAITKAN DENGAN CURAH HUJAN DI KOTA MAKASSAR

Authors

  • Sukarna Sukarna Universitas Negeri Makassar
  • Sahlan Sidjara Universitas Negeri Makassar
  • Aswi Aswi Universitas Negeri Makassar
  • Oktaviana Oktaviana Universitas Negeri Makassar

DOI:

https://doi.org/10.32493/sm.v4i2.25556

Keywords:

ARIMAX, Covid-19, rainfall, Makassar

Abstract

ABSTRACT

 

This research applies a quantitative modelling approach and focuses on ARIMAX modelling in the Covid-19 case associated with rainfall in Makassar City. Data were obtained from the government's official website for daily confirmed case data of Covid-19 and rainfall (from June 25, 2020 to January 15, 2022). Rainfall is measured in mm which is the independent variable ( ), and confirmed Covid-19 as the dependent variable ( ). This research objective is to obtain the best ARIMAX model that informs the effect of rainfall intensity ( ) on the number of confirmed cases of Covid-19 ( ). This best model used the criteria that all parameters are significant, the residuals involved the white noise assumption and the best criteria measured from the smallest value of Akaike Information Criterion (AIC). The best model in this study is ARIMAX(3,0,5), with the smallest AIC value of 7,220,96. The results of this study indicate that rainfall ( ) has no significant effect on the number of confirmed Covid-19 ( ) in Makassar City.

 

Keywords: ARIMAX, Covid-19, rainfall, Makassar.

 

ABSTRAK

 

Penelitian ini menerapkan pendekatan pemodelan kuantitatif (quantitative modelling approach) dan membahas pemodelan ARIMAX pada kasus Covid-19 dikaitkan dengan curan hujan di Kota Makassar. Data diperoleh dari website resmi pemerintah untuk data kasus terkonfirmasi harian Covid-19 dan juga curah hujan (mulai Tanggal 25 Juni 2020 s/d 15 Januari 2022). Curah Hujan diukur dalam mm yang merupakan variabel bebas ( , dan terkonfirmasi Covid-19 sebagai variabel terikat ( . Penelitian ini bertujuan untuk mendapatkan model ARIMAX terbaik yang menginformasikan pengaruh intensitas curah hujan (  terhadap jumlah kasus terkonfirmasi Covid-19 ( . Model terbaik ini memenuhi kriteria bahwa semua parameter signifikan, residual memenuhi asumsi white noise dan kriteria terbaiknya menggunakan nilai Akaike Information Criterion (AIC). Model terbaik yang diperoleh dalam penelitian ini adalah ARIMAX(3,0,5), dengan nilai AIC terkecil sebesar 7.220,96. Hasil penelitian ini menunjukkan bahwa Curah Hujan (  tidak berpengaruh signifikan terhadap jumlah terkonfirmasi Covid-19 (  di Kota Makassar.

 

Kata kunci: ARIMAX, Covid-19, Curah hujan, Makassar

References

Amalia, A., Zukhronah, E., & Subanti, S. (2021). Peramalan Data Inflow dan Outflow Uang Kartal Bank Indonesia Provinsi DKI Jakarta Menggunakan Model ARIMAX dan SARIMAX. Indonesian Journal of Applied Statistics, 4(2), 87. https://doi.org/10.13057/ijas.v4i2.45673

Andrews, B. H., Dean, M. D., Swain, R., & Cole, C. (2013). Building ARIMA and ARIMAX Models for Predicting Long-Term Disability Benefit Application Rates in the Public / Private Sectors Sponsored by Society of Actuaries Health Section Prepared by University of Southern Maine. Society of Actuaries, August.

Aswi, A., Cramb, S., Hu, W., White, G., & Mengersen, K. (2020). Spatio-Temporal Analysis of Dengue Fever in Makassar Indonesia: A Comparison of Models Based on CARBayes. In Case Studies in Applied Bayesian Data Science, Lecture Notes in Mathematics (Vol. 2259, pp. 229–244). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-42553-1_9

Aswi, A., Cramb, S. M., Moraga, P., & Mengersen, K. (2019). Bayesian spatial and spatio-temporal approaches to modelling dengue fever: A systematic review. Epidemiology and Infection, 147(e33), 1–14. https://doi.org/10.1017/S0950268818002807

Aswi, A., Sukarna, S., Cramb, S., & Mengersen, K. (2021). Effects of Climatic Factors on Dengue Incidence: A Comparison of Bayesian Spatio-Temporal Models. Journal of Physics: Conference Series, 1863(1). https://doi.org/10.1088/1742-6596/1863/1/012050

Aswi, Zaki, A., & Hijrayanti. (2015). Spatial Analysis of The Spread of Tuberculosis using Local Indicator of Spatial Assocition (LISA) in Makassar, Indonesia. ICSMTR, 182–192. http://repositori.uin-alauddin.ac.id/1455/1/Proceeding ICSMTR.pdf

Castiglione, F., Mancini, E., Pedicini, M., & Jarrah, A. S. (2018). Quantitative modelling approaches. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 1–3(January), 874–883. https://doi.org/10.1016/B978-0-12-809633-8.20454-8

Ciotti, M., Ciccozzi, M., Terrinoni, A., Jiang, W. C., Wang, C. Bin, & Bernardini, S. (2020). The COVID-19 pandemic. In Critical Reviews in Clinical Laboratory Sciences (Vol. 57, Issue 6, pp. 365–388). Taylor & Francis. https://doi.org/10.1080/10408363.2020.1783198

Hossain, M. S., Ahmed, S., & Uddin, M. J. (2021). Impact of weather on COVID-19 transmission in south Asian countries: An application of the ARIMAX model. Science of the Total Environment, 761. https://doi.org/10.1016/j.scitotenv.2020.143315

Iqbal, A., & Burhanuddin, E. a. (2020). Merajut Asa di Tengah Pandemi Covid-19. In Deepublish, Yogyakarta,. Deepublish.

Khikmah, K. N. (2021). Penerapan Principal Component Analysis dalam Penentuan Faktor Dominan Cuaca Terhadap Penyebaran Covid-19 di Surabaya. ESTIMASI: Journal of Statistics and Its Application, 2(1), 11–18. https://doi.org/10.20956/ejsa.v2i1.11943

Latief, M. I., Hasbi, & Amandaria, R. (2021). Collaboration in handling COVID-19 toward people in poverty line: study case in Makassar. Gaceta Sanitaria, 35(S1), S30–S32. https://doi.org/10.1016/j.gaceta.2020.12.009

Ling., A. S. C., Darmesah, G., Chong, K. P., & Ho, C. M. (2019). Application of ARIMAX model to forecast weekly cocoa black pod disease incidence. Mathematics and Statistics, 7(4), 29–40. https://doi.org/10.13189/ms.2019.070705

Mariana, N. (2020). Coronavirus disease 2019 ( COVID-19 ) (Vol. 2019, Issue April).

Nurfitri, Yundari, & Martha, S. (2020). Pemodelan Data Runtun waktu dengan ARIMAX. Bimaster : Buletin Ilmiah Matematika, Statistika Dan Terapannya, 9(1), 129–136. https://doi.org/10.26418/bbimst.v9i1.38667

Pudjiastuti, S. R., , S., & Hadi, N. (2020). The Effect of Corona Virus on The Global Climate. JHSS (Journal of Humanities and Social Studies), 4(2), 130–136. https://doi.org/10.33751/jhss.v4i2.2456

Putri, A. A., Sanusi, W., & Sukarna. (2018). Model Regresi Spasial dan Aplikasinya pada Kasus Tingkat Kemiskinan Kabupaten Soppeng. Indonesian Journal of Fundamental Science, 4(2), 102–109.

Resha, M., Suyuti, A., Sadjad, R. S., & Niswar, M. (2019). Mapping the Pattern of Spread of Tuberculosis Cases using Spatio-Temporal Approach in Makassar - South Sulawesi. International Conference on Computer, Control, Informatics and Its Applications: Emerging Trends in Big Data and Artificial Intelligence, IC3INA, 99–102. https://doi.org/10.1109/IC3INA48034.2019.8949595

Sansom, R. S., Choate, P. G., Keating, J. N., & Randle, E. (2018). Parsimony, not Bayesian analysis, recovers more stratigraphically congruent phylogenetic trees. Biology Letters. https://doi.org/10.1098/rsbl.2018.0263

Sari, W., Siagian, I. E., & Rombot, D. V. (2021). Gambaran penyebaran COVID-19 di Provinsi Sulawesi Selatan pada bulan Maret-Juli 2020. Jurnal Kedokteran Komunitas Dan Tropik, 8(02), 307–312. https://ejournal.unsrat.ac.id/index.php/JKKT/article/view/33584

Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research, 24, 91–98. https://doi.org/10.1016/j.jare.2020.03.005

Sohrabi, C., Alsafi, Z., O’Neill, N., Khan, M., Kerwan, A., Al-Jabir, A., Iosifidis, C., & Agha, R. (2020). World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). In International Journal of Surgery. https://doi.org/10.1016/j.ijsu.2020.02.034

Sukarna, Ananda, E. Y. P., & Wahyuni, M. S. (2021). Rainfall Forecasting Model Using ARIMA and Kalman Filter in Makassar, Indonesia. Journal of Physics: Conference Series, 2123(1), 0–7. https://doi.org/10.1088/1742-6596/2123/1/012044

Sukarna, Awi, & Sutamrin. (2020). Analisis Spasial Sebaran Penyakit Menular Kota Makassar Tahun 2018. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 14(1), 113–122. https://doi.org/10.30598/barekengvol14iss1pp113-122

Sukarna, S., Sanusi, W., & Hardiono, H. (2020). Analisis Moran’s I, Geary’s C, dan Getis-Ord G pada Penerapan Jumlah Penderita Kusta di Kabupaten Gowa. Journal of Mathematics Computations and Statistics, 2(2), 151. https://doi.org/10.35580/jmathcos.v2i2.12577

Sumandiyar, A., & Nur, H. (2020). Membangun Hubungan Sosial Masyarakat di Tengah Pandemi Covid-19 di Kota Makassar. Prosiding Seminar Nasional Problematika Sosial Pandemi Covid-19, 74–81. https://ojs.literacyinstitute.org/index.php/prosiding-covid19%0AMembangun

Susilo, A., Rumende, C. M., Pitoyo, C. W., Santoso, W. D., Yulianti, M., Herikurniawan, H., Sinto, R., Singh, G., Nainggolan, L., Nelwan, E. J., Chen, L. K., Widhani, A., Wijaya, E., Wicaksana, B., Maksum, M., Annisa, F., Jasirwan, C. O. M., & Yunihastuti, E. (2020). Coronavirus Disease 2019: Tinjauan Literatur Terkini. Jurnal Penyakit Dalam Indonesia, 7(1), 45. https://doi.org/10.7454/jpdi.v7i1.415

Syahridha, S., Massi, N., Ahmad, A., & Djaharuddin, I. (2021). Associated Factors of the Results of Pulmonary Tuberculosis Treatment During the COVID-19 Pandemic in Makassar City. OAMJMS (Open Access Macedonian Journal of Medical Sciences), 9(B), 1001–1005. https://doi.org/10.3889/oamjms.2021.6742

Tenenbaum, G., & Filho, E. (2016). Measurement Considerations in Performance Psychology. In Performance Psychology: Perception, Action, Cognition, and Emotion. https://doi.org/10.1016/B978-0-12-803377-7.00003-X

Tiro, M. A., Ruliana, & Aswi, A. (2020). Eksplorasi Literasi Statistika Deskriptif Mahasiswa Program Studi Universitas Negeri Makassar dalam Suasana Pembelajaran Daring Akibat Darurat Covid-19. Seminar Nasional VARIANSI, 149–159.

Tosepu, R., Gunawan, J., Effendy, D. S., Ahmad, L. O. A. I., Lestari, H., Bahar, H., & Asfian, P. (2020). Correlation between weather and Covid-19 pandemic in Jakarta, Indonesia. Science of the Total Environment, 725. https://doi.org/10.1016/j.scitotenv.2020.138436

Vargas, J. R. N. (2020). The COVID-19 pandemic. Revista Facultad de Medicina, 68(1), 7–8. https://doi.org/10.15446/revfacmed.v68n1.86482

Wardi, I., Laksmiwati, I., Gunadi, I., & As-syakur, A. (2014). DAMPAK PERTUMBUHAN PENDUDUK TERHADAP LINGKUNGAN DAN BUDAYA SUBAK : STUDI KASUS DI KABUPATEN TABANAN PROVINSI BALI. Bumi Lestari, 14(2), 110–124.

Wijayanti, K., Martha, S., & Debataraja, N. N. (2021). Perbandingan Model Arimax Dan Fungsi Transfer Pada Peramalan Curah Hujan. Jurnal Gaussian, 10(2), 233–242.

Yulia, E., Ananda, P., Annisa, Y., & Nova, H. (2021). Pemberdayaan Desa Wisata Desa Sengkol HASIL & PEMBAHASAN. 1, 519–521.

Downloads

Published

2022-11-18

Issue

Section

Articles