PEMODELAN TIME SERIES UNTUK NILAI TUKAR RUPIAH DI MASA PANDEMI COVID-19

Authors

  • Hisyam Ihsan Universitas Negeri Makassar
  • Abdul Rahman Universitas Negeri Makassar
  • Sukarna Sukarna Unversitas Negeri Makassar
  • Aswi Aswi Universitas Negeri Makassar
  • Muhammad Ammar Naufal Universitas Negeri Makassar

DOI:

https://doi.org/10.32493/sm.v4i2.26100

Keywords:

covid-19, rupiah exchange rate, temporal model, ARIMA

Abstract

Abstract: Covid-19 is an international disaster with a long occurrence interval. The research divides this disaster into four phases, namely before the Covid-19 pandemic (1 January 2019 to 31 March 2020), the implementation of PSBB (1 April 2020 to 20 January 2021), the performance of PPKM & Micro-Lockdown (21 January 2021 to 23 July 2021), and after Covid-19 is reduced (24 July 2021 to 30 June 2022). Data on IDR to USD exchange rates were obtained from the official website from 1 January 2019 to 30 June 2022. Comparing the ARIMA temporal model for the four phases was proposed in this study as an inferential and descriptive way to compare exchange rates. The results showed that the IDR exchange rate against the USD closed at IDR 14,155.63 (before the pandemic), IDR 15,581.83 (PSBB period), IDR 14,362.84 (PPKM period), and IDR 14,368.16 (after the pandemic). According to the smallest AIC or parsimony considerations, the most effective ARIMA model is ARIMA(2,1,0) for the stage before the pandemic, ARIMA(0,2,1) for the stage during PSBB, ARIMA(3,1,0) for the stage during PPKM & micro-lockdown, and ARIMA(2,1,0) for the stage after the pandemic.

ABSTRAK: Pandemi Covid-19 merupakan bencana internasional yang sangat panjang interval kejadiannya. Penelitian ini membagi bencana ini menjadi 4 fase, yaitu sebelum pandemi Covid-19 (1 januari 2019 s/d 31 Maret 2020), pemberlakuan PSBB (1 April 2020 s/d 20 Januari 2021), pemberlakuan PPKM & Micro-Lockdown (21 Januari 2021 s/d 23 Juli 2021), dan setelah Covid-19 berkurang (24 Juli 2021 s/d 30 Juni 2022). Data nilai tukar IDR ke USD diambil dari situs resmi mulai 1 Januari 2019 s/d 30 Juni 2022. Tujuan penelitian ini adalah membandingkan nilai tukar secara deskriptif dan inferensial dengan membandingkan model temporal ARIMA untuk keempat fase tersebut. Hasil penelitian menunjukan bahwa nilai tukar IDR terhadap USD ditutup pada Rp 14.155,63 (sebelum pandemi), Rp 15.581,83 (masa PSBB), Rp 14.362,84 (masa PPKM), dan Rp 14.368,16 (setelah pandemi). Model ARIMA terbaik berdasarkan AIC terkecil atau pertimbangan parsimony untuk tiap fase adalah ARIMA(2,1,0) sebelum pandemi, ARIMA(0,2,1) dimasa PSBB, ARIMA(3,1,0) dimasa PPKM & micro-lockdown, dan ARIMA(2,1,0) setelah masa pandemi.

Kata kunci: covid-19, nilai tukar rupiah, model temporal, ARIMA.

References

Aswi, A., & Sukarna, S. (2017). Analisis Deret Waktu: Teori dan Aplikasi (M. A. Tiro, Ed.). Andira Publisher.

Box, G. E. P., & Jenkins, G. M. (1970). Time Series Analysis, Forecasting and Control. Holden-Day, Inc.

Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2016). Time Series Analysis: Forecasting and Control (5th ed.). John Wiley & Sons, Inc.

Ciotti, M., Ciccozzi, M., Terrinoni, A., Jiang, W. C., Wang, C. Bin, & Bernardini, S. (2020). The COVID-19 pandemic. In Critical Reviews in Clinical Laboratory Sciences (Vol. 57, Issue 6, pp. 365–388). Taylor & Francis. https://doi.org/10.1080/10408363.2020.1783198

Dirjen Pencegahan dan Pengendalian Penyakit. (2020). Pedoman Pencegahan dan Pengendalian Coronavirus Diseases (COVID-19). In GERMAS Kemenkes RI.

Gennaro, F. Di, Pizzol, D., Marotta, C., Antunes, M., Racalbuto, V., Veronese, N., & Smith, L. (2020). Coronavirus Diseases (COVID-19) Current Status and Future Perspectives: A Narrative Review. International Journal of Environment Research and Public Health, 17(2690), 1–11. https://doi.org/10.3390/ijerph17082690

Gorbalenya, A. E., Baker, S. C., Baric, R. S., Groot, R. J. de, Drosten, C., Gulyaeva, A. A., Haagmans, B. L., Lauber, C., Leontovich, A. M., Neuman, B. W., Penzar, D., Perlman, S., Poon, L. L. M., Samborskiy, D., Sidorov, I. A., Sola, I., & Ziebuhr, J. (2020). Severe acute respiratory syndrome-related coronavirus: The species and its viruses - a statement of the Coronavirus Study Gruop (p. 20). CC-BY-NC-ND 4.0 International License. https://doi.org/10.1101/2020.02.07.937862

Hariadi, W., & Sulantari. (2021). Analisis Survival Lama Waktu Sembuh Pasien Covid-19 dengan Metode Kaplan-Meier dan Log-Rank di Kabupaten Jember. Transformasi: Jurnal Pendidikan Matematika Dan Matematika, 5(1), 415–425.

Haryanto. (2020). Dampak Covid-19 terhadap Pergerakan Nilai Tukar Rupiah dan Indeks Harga Saham Gabungan (IHSG). The Indonesian Journal of Development Planning, 4(2), 151–165. https://doi.org/10.36574/jpp.v4i2.114

Ikhsan, A., Cipta, H., Farasonalia, R., & Septia, K. (2020). Antisipasi Penyebaran Corona di Berbagai Daerah, Mulai Sekolah Diliburkan hingga Pemberlakuan Semi Lockdown. Regional.Kompas.Com. https://regional.kompas.com/read/2020/03/16/05400001/antisipasi-penyebaran-corona-di-berbagai-daerah-mulai-sekolah-diliburkan?page=all

Makridakis, S., Wheelwright, S. C., & McGee, V. E. (1983). Forecasting: Methods and Applications.

Moh.Nasir, W. Y. (2015). Peramalan Jumlah Penumpang Dari Pelayaran Negeri di Pelabuhan Kota Makassar Menggunakan Metode Seasonal Autoregressive Integrated Average (SARIMA). 151, 10–17.

Rohmah, N. K. (2019). Prediksi Laju Inflasi Menggunakan Metode ARIMA Kalman Filter di Surabaya. In Skripsi.

Saptoyo, R. D. A. (2021). Istilah Populer Sepanjang 2021: PSBB, PPKM hingga Micro Lockdown. KOMPAS.Com. https://www.kompas.com/tren/read/2021/12/29/163000265/istilah-populer-sepanjang-2021--psbb-ppkm-hingga-micro-lockdown?page=all

Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research, 24, 91–98. https://doi.org/10.1016/j.jare.2020.03.005

Sina, P. G. (2020). Ekonomi Rumah Tangga Di Era Pandemi Covid-19. Journal of Management : Small and Medium Enterprises (SMEs), 12(2), 239–254. https://doi.org/10.35508/jom.v12i2.2697

Suryani, R. S. (2016). Peramalan Curah Hujan dengan Metode Autoregressive Integrated Moving Average with Exogenous Input (ARIMAX). 7(1), 13.

Wei, W. W. S. (2019). Multivariate Time Series Analysis and Applications. John Wiley & Sons, Inc.

WHO. (2021). COVID-19 Coronavirus Pandemic.

WHO. (2022). WHO Coronavirus (COVID-19) Dashboard. WHO (COVID-19) Homepage. https://covid19.who.int/

Downloads

Published

2022-12-05

Issue

Section

Articles