ALGORITMA CONVOLUTIONAL NEURAL NETWORK DALAM KLASIFIKASI CHEST X-RAYS PASIEN COVID-19 MENGGUNAKAN FUNGSI AKTIVASI SIGMOID
DOI:
https://doi.org/10.32493/sm.v4i2.27058Keywords:
Convolutional neural network, Klasifikasi, Chest x-rays, COVID-19Abstract
Convolutional neural network merupakan pengembangan dari artificial neural network. Penelitian ini akan melakukan klasifikasi chest x-rays pasien COVID-19. Proses klasifikasi dilakukan dengan menggunakan bantuan fungsi aktivasi sigmoid untuk kasus klasifikasi biner. Selama ini untuk mendiagnosa COVID-19 dilakukan dengan tes Reverse Transcription Polymerase Chain Reaction (RT-PCR). Namun ada beberapa masalah pada mekanisme pengujian tes (RT-PCR) diantaranya perlunya alat dan bahan khusus dan memakan waktu yang cukup lama. Solusi yang lebih cepat berbasis data sangat diperlukan dibandingkan melakukan tes (RT-PCR). Salah satu cara yang dapat membantu adalah dengan memanfaatkan citra digital berupa chest x-rays untuk mengambil informasi dan mengenali objek secara otomatis dengan menggunakan metode convolutional neural network. Hasil klasifikasi chest x-rays dengan arsitektur convolutional neural network yang telah dibangun mendapatkan nilai akurasi sebesar 91%, presisi sebesar 86% dan recall sebesar 79%.
References
Alpaydın, E. (2020). Introduction to Machine Learning (4th ed.). MIT Press.
Hasan, M., Ullah, S., Khan, M. J., & Khurshid, K. (2019). Comparative Analysis of SVM, ANN and CNN for Classifying Vegetation Species using Hyperspectral Thermal Infrared Data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2/W13), 1861–1868. https://doi.org/10.5194/isprs-archives-XLII-2-W13-1861-2019
Hassantabar, S., Ahmadi, M., & Sharifi, A. (2020). Diagnosis and detection of infected tissue of COVID-19 patients based on lung x-ray image using convolutional neural network approaches. Chaos, Solitons and Fractals, 140, 110170. https://doi.org/10.1016/j.chaos.2020.110170
Kabir Anaraki, A., Ayati, M., & Kazemi, F. (2018). Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms. Biocybernetics and Biomedical Engineering, 39(1), 63–74. https://doi.org/10.1016/j.bbe.2018.10.004
Krizhevsky, A., Sutskeve, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. 60, 84–90. https://doi.org/10.1145/3383972.3383975
Setiawan, W. (2020). Deep Learning Menggunakan Convolutional Neural Network. MNC.
Srinivasan, N., Ravichandran, V., Chan, K. L., Vidhya, J. R., Ramakirishnan, S., & Krishnan, S. M. (2002). Exponentiated backpropagation algorithm for multilayer feedforward neural networks. ICONIP 2002 - Proceedings of the 9th International Conference on Neural Information Processing: Computational Intelligence for the E-Age, 1(December), 327–331. https://doi.org/10.1109/ICONIP.2002.1202187
Downloads
Published
Issue
Section
License
As an Author, you have the right to a variety of uses for your article, including institutions or companies. The author's rights might do without the need for special permission.
Authors who publish in the Jurnal Jurnal Statistika dan Matematika (Statmat) have broad rights to use their works for education and scientific purposes without permission, including:
Used to discuss in a class by the author or the author's body and presentations at meetings or conferences and participant approval;
Used for internal training by the author's company;
Distribution to colleagues for the use of their research;
Used in preparation for further author's works;
Included in a thesis or dissertation;
Partial or extra reuse of articles in other works (with full acknowledgment of the last item);
Prepare derivatives (other than for commercial purposes);
Post voluntarily on a website opened by the author or approve the author for scientific purposes (follow CC with a SA License).