PEMODELAN KELUHAN KESEHATAN DAN INDEKS KEBAHAGIAAN DI INDONESIA TAHUN 2021 MENGGUNAKAN PENDEKATAN LOCAL POLYNOMIAL
DOI:
https://doi.org/10.32493/sm.v5i1.27380Keywords:
Indeks Kebahagiaan, Keluhan Kesehatan, Local PolynomialAbstract
Dalam upaya peningkatan kesejahteraan penduduk yang berlandaskan pada kepuasan masyarakat, BPS melakukan pengukuran Indeks Kebahagiaan sejak tahun 2012. Saat ini Indeks Kebahagiaan masyarakat Indonesia di tahun 2021 mengalami peningkatan dari pengukuran sebelumnya di tahun 2017, meskipun kondisi pandemi Covid-19 masih melanda hingga saat ini yang menimbulkan keluhan kesehatan pada masyarakat. Penelitian ini dilakukan untuk melihat bagaimana pengaruh persentase keluhan kesehatan terhadap Indeks Kebahagiaan di Indonesia pada tahun 2021 dengan menggunakan model regresi nonparametrik Local Polynomial. Hasil penelitian menunjukkan pola fluktuatif yang cenderung menurun, yang berarti peningkatan keluhan kesehatan di masyarakat cenderung menyebabkan indeks kesehatan menurun.
References
Badan Pusat Statistik. (2015). Indeks Kebahagiaan Tahun 2014. Jakarta: Badan Pusat Statistik.
Badan Pusat Statistik. (2021). Indeks Kebahagiaan 2021. Jakarta: Badan Pusat Statistik.
Badan Pusat Statistik. (2021). Profil Statistik Kesehatan 2021. Jakarta: Badan Pusat Statistik.
Chen, B. (2005). Local Polynomial Regression Analysis of Clustered Data. Biometrica, 92 (1), 59-74.
Easterlin, R. (1974). Does Economic Growth Improvhe Human Lot? In: Paul A. D., M. V. Reder (eds) Nations and Households in Economic Growth: Essays in Honour of Moses Abramovitz. New York:: Academic Press.
Eubank, R. (1999). Nonparametric Regression and Spline Smoothing. New York: Marcel Dekker.
Eubank, R. L. (1988). Spline Smoothing and Nonparametric Regression. New York: Mercel Dekker.
Frey, B., & Stutzer, A. (2000). Happiness, economy and institutions. Economic Journal Vol.110, 918-938.
Golub, G., Heath, M., & Wahba, G. (1979). Generalized Cross-Validation as a Method for Choosing a Good Ridge Parameter. Technometrics, 215-223.
Hardle, W. (1990). Applied Nonparametric Regression. New York: Cambridge University.
Ng, Y. (1997). A case for happiness, cardinal utility, and interpersonal comparability. Economic Journal Vol.107 No.445, 1848-1858.
Takezawa, K. (2006). Introduction to Nonparametric Regression. New Jersey: John Wiley & Sons Inc.
Wei, W. W. (1990). Time Series Analysis: Univariate and Multivariate Methods. Addison Wasley.
Welsh, A., & Yee, T. (2005). Local Regression for Vector Responses. Journal of Statistical Planning and Inference Vol. 136, 3007-3031.
Wu, H., & Zhang, J. (2006). Nonparametric Regression Methods for Longitudinal Data Analysis. New Jersey: John-Wiley and Sons Inc. Publication.
Downloads
Published
Issue
Section
License
As an Author, you have the right to a variety of uses for your article, including institutions or companies. The author's rights might do without the need for special permission.
Authors who publish in the Jurnal Jurnal Statistika dan Matematika (Statmat) have broad rights to use their works for education and scientific purposes without permission, including:
Used to discuss in a class by the author or the author's body and presentations at meetings or conferences and participant approval;
Used for internal training by the author's company;
Distribution to colleagues for the use of their research;
Used in preparation for further author's works;
Included in a thesis or dissertation;
Partial or extra reuse of articles in other works (with full acknowledgment of the last item);
Prepare derivatives (other than for commercial purposes);
Post voluntarily on a website opened by the author or approve the author for scientific purposes (follow CC with a SA License).