Penerapan Regresi Cox untuk Menganalisis Variabel yang Berpengaruh Terhadap Durasi Studi Mahasiswa

Authors

  • Rhoudhotul Widyastuti Universitas PGRI Semarang
  • Dewi Wulandari Universitas PGRI Semarang
  • Dina Prasetyowati Universitas PGRI Semarang

DOI:

https://doi.org/10.32493/sm.v7i1.41948

Keywords:

Survival Analysis, Study, Duration, Cox Regression

Abstract

This research aims to obtain the Cox regression equation in managing student study duration data and to determine variables or factors that significantly influence student study duration. We used data from 2017 FPMIPATI (Fakultas Pendidikan Matematika, Ilmu Pengetahuan Alam dan Teknologi Informasi) UPGRIS (Universitas PGI Semarang) Mathematics Education study program students which consisted of four predictor variables including gender, cumulative achievement index, parents' educational background, and organizational participation. From the results of the survival analysis, it was found that the factor that had a significant influence on the duration of student studies was the cumulative achievement index.

References

Bain, L. J., dan Engelhardt, M. 1992. Introduction to Probability and Mathematical Statistics 2nd Edition. Boston. Duxburry Press.

Collet, D. 2003. Text in Statistical Science: Modelling Survival Data in Medical Research Second Edition. USA. Chapman & Hall.

Deo, S. V., Deo, V., dan Sundaram, V. 2021. Survival Analysis—Part 2: Cox Proportional Hazards Model. Indian J Thorac Cardiovasc Surg. Vol. 37(2) Pp. 229–233.

Dessai, S., Simha, V., dan Patil, V. 2018. Stepwise Cox regression analysis in SPSS. Cancer Research, Statistics, and Treatment Vol 1(2) Pp. 167-170

Fitriana, R. 2016. Analisis Survival Faktor-Faktor yang Mempengaruhi Lama Studi Mahasiswa Pendidikan Matematika Angkatan 2010 dengan Metode Regresi Cox Proportional Hazard. Tugas Akhir Program Studi Statistika Terapan Dan Komputasi, Jurusan Matematika FMIPA UNNES. https://lib.unnes.ac.id/25050/

Hosmer, D. W., Lemeshow, S., dan May, S. 2008. Applied Survival Analysis: Regression Modelling of Time to Event Data. New Jersey. John Wiley.

Kristanti, F. T. 2019. Financial Distress 1st Edition. Malang. Intelegensia Media.

Latan, H. 2014. Aplikasi Analisis Data Statistik Untuk Ilmu Sosial dan Sains dengan IBM SPSS. Bandung. Alfabeta

Lawless, J. F. 1982. Statistical Models and Methods for Lifetime Data. USA. John Wiley & Sons, Inc.

Lawless, J. F. 2007. The Statistical Analysis of Recurrent Event. USA. Springer Science+Business Media Inc.

Maiyanti, S. I., Cahyono, E. S., dan Eliyati, N. 2016. Aplikasi Regresi Cox Metode Backward untuk Menduga Faktor-faktor yang Berpengaruh terhadap Waktu Kelulusan Mahasiswa Bidik Misi Unsri. In PRISMA, Prosiding Seminar Nasional Matematika (pp.418-426).

Prabawati, S., Nasution, Y. N., dan Wahyuningsih, S. 2018. Analisis Survival Data Kejadian Bersama dengan Pendekatan Efron Partial Likelihood (Studi Kasus: Lama Masa Studi Mahasiswa Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman Angkatan 2011). Jurnal Eksponensial Vol. 09 Pp. 75–84.

Downloads

Published

2025-04-30

How to Cite

Widyastuti, R., Wulandari, D., & Prasetyowati, D. (2025). Penerapan Regresi Cox untuk Menganalisis Variabel yang Berpengaruh Terhadap Durasi Studi Mahasiswa. STATMAT: Jurnal Statistika Dan Matematika, 7(1), 84–93. https://doi.org/10.32493/sm.v7i1.41948

Issue

Section

Articles