Analisis Perbandingan Metode Fuzzy Time Series Model Singh dan Markov Chain untuk Prediksi Tingkat Penghunian Kamar Hotel Bintang di Yogyakarta
DOI:
https://doi.org/10.32493/sm.v7i1.48599Keywords:
Prediction, Fuzzy Time Series, Singh, Markov Chain, Hotel Room OccupancyAbstract
Sektor pariwisata mengalami peningkatan tren jumlah wisatawan dan tingkat penghunian kamar hotel setelah pandemi Covid-19. Dibutuhkan metode prediksi yang akurat, guna mendukung pengelolaan pariwisata serta kesiapan dalam menghadapi situasi darurat seperti pandemi Covid-19. Penelitian ini membandingkan akurasi metode Fuzzy Time Series model Singh dan Markov Chain dalam memprediksi tingkat penghunian kamar hotel bintang di Yogyakarta pascapandemi Covid-19. Data sekunder dari Badan Pusat Statistik (BPS) dibagi menjadi 80% data train dan 20% data test, kemudian dianalisis melalui fuzzifikasi, pembentukan Fuzzy Logic Relations (FLR) dan Fuzzy Logic Relations Grup (FLRG), serta defuzzifikasi dan prediksi dilakukan sesuai tahapan masing-masing model. Model Singh mempertimbangkan pola data historis tiga periode sebelumnya. Model Markov Chain menggunakan probabilitas transisi antar state. Nilai Mean Squared Error (MSE) dan Mean Absolute Percentage Error (MAPE) digunakan sebagai hasil evaluasi analisis model. Hasil menunjukkan model Singh lebih akurat dengan MSE 6,42 dan MAPE 5,57% pada train serta MSE 8,57 dan MAPE 4,75% pada test, dibandingkan model Markov Chain yang memiliki MSE 35,64 dan MAPE 14,68% pada data train serta nilai MSE 24,54 dan MAPE 6,11% pada data test. Oleh karena itu, model Singh dipilih untuk peramalan lima periode mendatang. Periode November 2024 memiliki nilai prediksi tingkat penghunian kamar sebesar 53,31 dan seterusnya.
References
Alfarisi, W.W. (2023). Analisis Perbandingan Metode Fuzzy Time Series Markov Chain Dan Fuzzy Time Series Stevenson Porter Pada Peramalan Tingkat Hunian Kamar Provinsi Jambi. (Skripsi Sarjana, Universitas Islam Indonesia).
Alyousifi, Y., Othman, M., Sokkalingam, R., Faye, I., & Silva, P. C. L. (2020). Predicting daily air pollution index based on fuzzy time series Markov chain model. Symmetry, 12(2), 293.
Ampountolas, A. (2021). Modeling and Forecasting Daily Hotel Demand: A Comparison Based on SARIMAX, Neural Networks, and GARCH Models. Forecasting, 3(3), 580-595.
Badan Pusat Statistik. (2023). Statistik Wisatawan Nasional 2023. Jakarta: BPS- Statistics Indonesia.
Chang, Y.-M., Chen, C.-H., Lai, J.-P., Lin, Y.-L., & Pai, P.-F. (2021). Forecasting Hotel Room Occupancy Using Long Short-Term Memory Networks with Sentiment Analysis and Scores of Customer Online Reviews. Applied Sciences, 11(21), 10291.
Fatih, C. (2022). Forecasting Models Based on Fuzzy Logic: An Application on International Coffee Prices. Econometrics, 26(4), 1-16.
Koo, J. W., Wong, S. W., Selvachandran, G., Long, H. V., & Son, L. H. (2019). Prediction of Air Pollution Index in Kuala Lumpur using fuzzy time series and statistical models. Air Quality, Atmosphere & Health, 13, 77-88.
Lewis, C. D. (1982). Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting. Butterworth Scientific.
Singh, S. R. (2007). A simple method of forecasting based on fuzzy time series. Applied Mathematics and Computation. 186(1), 330-339.
Singh, S. R. (2008). A computational method of forecasting based on fuzzy time series. Mathematics and Computers in Simulation. 79(3), 539-554.
Song, Q & Chissom, B. (1993). Forecasting enrollments with fuzzy time series — Part I. Fuzzy Sets and Systems. 54(1), 1-9.
Song, Q & Chissom, B. (1993). Fuzzy time series and its models. Fuzzy Sets and Systems. 54(3), 269-277.
Song, Q & Chissom, B. (1994). Forecasting enrollments with fuzzy time series — part II. Fuzzy Sets and Systems. 62(1), 1-8.
Tsaur, R. C. (2012). A Fuzzy Time Series-Markov Chain Model with an Application to Forecast the Exchange Rate Between the Taiwan and US Dollar. International Journal of Innovative Computing, Information and Control (IJICIC). 8(7), 4931-4942.
Zadeh, L.A. (1965) Fuzzy Sets. Information Control, 8(3), 338-353.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ihsan Aji Nugroho, Dhoriva Urwatul Wutsqa

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
As an Author, you have the right to a variety of uses for your article, including institutions or companies. The author's rights might do without the need for special permission.
Authors who publish in the Jurnal Jurnal Statistika dan Matematika (Statmat) have broad rights to use their works for education and scientific purposes without permission, including:
Used to discuss in a class by the author or the author's body and presentations at meetings or conferences and participant approval;
Used for internal training by the author's company;
Distribution to colleagues for the use of their research;
Used in preparation for further author's works;
Included in a thesis or dissertation;
Partial or extra reuse of articles in other works (with full acknowledgment of the last item);
Prepare derivatives (other than for commercial purposes);
Post voluntarily on a website opened by the author or approve the author for scientific purposes (follow CC with a SA License).
