APLIKASI RANTAI MARKOV PADA PENENTUAN HARI BERSALJU DI BEBERAPA KOTA AMERIKA SERIKAT
DOI:
https://doi.org/10.32493/sm.v2i2.5435Abstract
Penelitian ini merupakan pemodelan proses stokastik. Metode penelitian yang digunakan adalah metode rantai markov, dimana yang akan datang Xt+1 hanya akan dipengaruhi keadaan terdekat sebelumnya Xt. Metode ini diterapkan pada data pengamatan hari bersalju untuk rantai markov di delapan stasiun pengamatan yang ada di Amerika Serikat, yaitu stasiun pengamatan New York, Sedro Wooley, Glendive, Willow City, Del Norte, Medford, Charleston, dan Blue Hill. Tujuan penelitian ini adalah untuk mengetahui arah kekonvergenan peluang transisi dan menentukan distribusi peluang rantai markov ð‘› langkah dengan tiga keadaan. Berdasarkan hasil pengolahan data dengan menggunakan software Matlab, matriks diagonal, dan teorema spektral didapatkan hasil yang sama untuk kekonvergenan matriks transisi dari masing-masing stasiun pengamatan dimana hasil tersebut dipengaruhi oleh selisih perubahan peluang dua keadaan.References
GHCN. 2010. Global historical climate network. Tersedia pada
http://www1.ncdc.noaa.gov/pub/data/ghcn/daily
Horn, R.A., Johnson, C. R. 2013. Matrix Analysis. New York: Cambridge University Press.
Ross, Sheldon M. 2003. Stochastic Process Second Edition. United States of America: John Wiley & Sons, Ink.
Rotondi, Michael A. 2010. To Ski or Not to Ski: Estimating Transition Matrices to Predict Tomorrow’s Snowfall Using Real Data. Journal of Statistics Education, Volume 18, Number 3.
Downloads
Published
Issue
Section
License
As an Author, you have the right to a variety of uses for your article, including institutions or companies. The author's rights might do without the need for special permission.
Authors who publish in the Jurnal Jurnal Statistika dan Matematika (Statmat) have broad rights to use their works for education and scientific purposes without permission, including:
Used to discuss in a class by the author or the author's body and presentations at meetings or conferences and participant approval;
Used for internal training by the author's company;
Distribution to colleagues for the use of their research;
Used in preparation for further author's works;
Included in a thesis or dissertation;
Partial or extra reuse of articles in other works (with full acknowledgment of the last item);
Prepare derivatives (other than for commercial purposes);
Post voluntarily on a website opened by the author or approve the author for scientific purposes (follow CC with a SA License).