Forecasting Ferry Passenger Traffic in New York City Using the Seasonal Arima (SARIMA) Model
DOI:
https://doi.org/10.32493/sm.v7i3.54879Keywords:
SARIMA, SARFIMA, Time Series, Forecasting, Water TransportationAbstract
This study addresses the seasonal and long-term fluctuating passenger volume patterns typical of water transportation systems such as NYC Ferry, necessitating practical forecasting methods to support operational decision-making and public transportation planning. The research aims to develop a forecasting model for NYC Ferry passenger counts using the Seasonal Autoregressive Integrated Moving Average (SARIMA) methodology. The analysis utilizes monthly historical passenger data from January 2020 to December 2024 for training data. Key analytical steps include testing data stationarity, splitting the dataset into training and testing subsets, modeling via RStudio, forecasting, and evaluating model accuracy using Mean Absolute Percentage Error (MAPE) compared against actual observations.
Results indicate that the SARIMA(1,0,0)(0,1,1)12 model outperforms other methods, yielding the lowest MAPE of 5.04%, compared to Multiplicative Winters (8.57%), SARFIMA (17.62%), and Holt-Winters (32.93%). The SARIMA model effectively captures both seasonal and monthly trends, producing accurate passenger volume predictions. These findings demonstrate SARIMA’s efficacy in monthly NYC Ferry ridership forecasting, contributing to time series literature, particularly within public transportation forecasting. Furthermore, the results offer practical insights for policymakers to strategize service capacity and enhance data-driven management of waterborne transit systems more efficiently.
References
1. Abidin Z. Studi revitalisasi angkutan sungai sebagai moda transportasi perkotaan di Kota Banjarmasin. Jurnal Transportasi. 2017;17(2):123–35.
2. Adewole AI, Amurawaye FF. Modeling temperature forecast in Ogun State, Nigeria with SARFIMA and SARIMA. J Sci Inf Technol (JOSIT). 2024;18(1):1–12.
3. AM New York. NYC Ferry ridership reaches record levels as spring begins. 2025 Apr 15 [cited 2025 Oct 11]. Available from: https://www.amny.com/news/nyc-ferry-record-ridership-april-2025
4. Badan Pusat Statistik. Statistik Transportasi Laut Indonesia 2024. Jakarta: BPS; 2024.
5. Behdani B, Emmerich S. Resilience of maritime passenger transport under environmental and economic uncertainties. Mar Policy Manag. 2020;47(6):751–66.
6. Box GEP, Jenkins GM, Reinsel GC, Ljung GM. Time series analysis: Forecasting and control. 5th ed. Hoboken, NJ: John Wiley & Sons; 2015.
7. Chen Y, Zhang H, Liu W. Forecasting urban ferry ridership using time-series models: Evidence from New York City. Transp Res Procedia. 2023;71:12–21.
8. Carvalho-Silva M, Monteiro MTT, Sá-Soares F, Dória-Nóbrega S. Assessment of forecasting models for patients arrival at Emergency Department. Oper Res Health Care. 2018;18:112–8.
9. Chang X, Gao M, Wang Y, Hou X. Seasonal autoregressive integrated moving average model for precipitation time series. J Math Stat. 2012;8(4):500–5.
10. Ghosh D, Song W. Forecasting passenger demand for urban ferry services in metropolitan cities. J Transp Geogr. 2020;82:102580.
11. Hyndman RJ, Athanasopoulos G. Forecasting: principles and practice. 2nd ed. Melbourne, Australia: OTexts; 2018 [cited 2025 Oct 12]. Available from: OTexts.com/fpp2
12. Kementerian Perhubungan RI. Laporan Statistik Transportasi Laut dan Sungai Tahun 2022. Jakarta: Kemenhub; 2022.
13. Lindsey G, Wang F. Public ferry systems as sustainable urban mobility solutions: The case of NYC Ferry. Sustain Cities Soc. 2020;60:102217.
14. Majka M. Seasonal Time Series Analysis: Why SARIMA Outshines ARIMA. ResearchGate; 2024.
15. Makridakis S, Wheelwright SC, Hyndman RJ. Forecasting: Methods and applications. 3rd ed. New York, NY: John Wiley & Sons; 1998.
16. Merabet F, Zeghdoudi H. On modelling seasonal ARIMA series: Comparison, application and forecast. WSEAS Trans Appl Theor Mech. 2020;15:1–10.
17. Moghimi B, Chen Z, Liu J. Non-stationary time series model for station-based ridership. J Big Data Anal Transp. 2022;4(3).
18. Montaño JJ, Palmer A, Sesé A, Cajal B. Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema. 2013;25(4):500–6.
19. NYC Open Data. NYC Ferry Ridershi. [cited 2025 Aug 29]. Available from: https://data.cityofnewyork.us/Transportation/NYC-Ferry-Ridership/t5n6-gx8c/about_data
20. OECD. Water transport and local economic development. Paris: OECD Publishing; 2021.
21. Pramesti DA, Nurhayati D. Peramalan jumlah penumpang kapal laut menggunakan model SARIMA pada Pelabuhan Tanjung Perak Surabaya. J Sains Seni ITS. 2021;10(2):A122–7.
22. Porter-Hudak S. Long-term memory modelling: A simplified spectral approach. Dissertation, University of Wisconsin–Madison; 1982.
23. Prawardani DSS. Analisis tren pergerakan penumpang di Pelabuhan Jayapura 2015–2024. J Teknik Transportasi, Universitas Muhammadiyah Palembang, Palembang; 2025.
24. Putri RD, Hidayat F. Analisis data penumpang kapal ferry untuk optimalisasi jadwal keberangkatan menggunakan metode time series. J Transportasi Logistik. 2020;7(2):95–104.
25. Rahma NA. Kajian transportasi sungai untuk menghidupkan kawasan tepian Sungai Kahayan Kota Palangkaraya. J Tataloka. 2014;16(1):1–12.
26. Saba T, Shahzad MN, Iqbal S, Rehman A, Abunadi I. A new hybrid SARFIMA-ANN model for tourism forecasting. Comput Mater Contin. 2021.
27. Sohifatul Khoiriyah N, Silfiani M, Novelinda R. Peramalan jumlah penumpang kapal di Pelabuhan Balikpapan dengan SARIMA. ResearchGate; 2023.
28. Susilo D, Santosa B. Analisis Penggunaan Data Penumpang untuk Optimalisasi Jadwal Kapal Penyeberangan di Indonesia. Jurnal Transportasi. 2021;21(2):88–97.
29. Xian X, Wang L, Wu X, Tang X, Zhai X, Yu R, et al. Comparison of SARIMA model, Holt-Winters model and ETS model in predicting the incidence of foodborne disease. BMC Infect Dis. 2023;23:803.
30. Zhou X, Li T. Data-driven adaptive service planning in public transportation: A case study on passenger behavior analysis. Sustain Cities Soc. 2022;80:103794.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Rana Aribah, Linda Apriliana, Gumgum Darmawan

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
As an Author, you have the right to a variety of uses for your article, including institutions or companies. The author's rights might do without the need for special permission.
Authors who publish in the Jurnal Jurnal Statistika dan Matematika (Statmat) have broad rights to use their works for education and scientific purposes without permission, including:
Used to discuss in a class by the author or the author's body and presentations at meetings or conferences and participant approval;
Used for internal training by the author's company;
Distribution to colleagues for the use of their research;
Used in preparation for further author's works;
Included in a thesis or dissertation;
Partial or extra reuse of articles in other works (with full acknowledgment of the last item);
Prepare derivatives (other than for commercial purposes);
Post voluntarily on a website opened by the author or approve the author for scientific purposes (follow CC with a SA License).
