Sintesis Papan Komposit Serat Bambu Apus dan Serbuk Kayu Jati dengan Metode Hot Press untuk Aplikasi Door Trim Mobil
DOI:
https://doi.org/10.32493/jitk.v6i2.21084Keywords:
volume fraction, apus bamboo fiber, teak wood particles, hot pressAbstract
Research has been carried out on composites from apus bamboo fiber and teak wood particles for car door trim applications. The research method used is compression molding using a hot press machine and testing is based on ISO 527-2 & ASTM D790 standards. This analysis uses the independent variable, namely the ratio of the volume fraction of apus bamboo fiber and teak wood particles 10:30, 20:20, 30:10%. While the fixed variables are 60% epoxy volume fraction, hot press temperature 100°C, pressing load 30 psi, and for 20 minutes. From the tensile test data, it is found that the variation of 30:10% fiber and particles which the variation with the best result is 84.69 MPa, then followed by a variation of 20:20%, is 42.60 MPa. The two variations above the minimum standard value of high-density fiberboard SNI 01-4449-2006:5-9 is 35 MPa. While the variation of 10:30% gets a value of 21.61 MPa which is below the minimum standard. For the bending test, the variation of 30:10% is the variation with the best result, which is 60.24 MPa and is above the minimum standard. Meanwhile, the variation of 10:30% and 20:20% has the lowest bending strength value with a value of 15.43 MPa and 29.61 MPa and is still below the minimum standard that has been set. For the fracture surface results, all variations resulted in fiber pull-out failure but the 30:10% variation which has ductile fracture properties and is considered safer for car door trim applications.References
A. Budiman and S. Sugiman, ―Karakteristik Sifat Mekanik Komposit Serat Bambu Resin Polyester Tak Jenuh Dengan Filler Partikel Sekam,‖ Din. Tek. Mesin, vol. 6, no. 1, pp. 76–82, 2016, doi: 10.29303/d.v6i1.28.
A. Pambudi, ―Proses manufaktur komposit berpenguat serat bambu betung (dendrocalamus asper) dan matriks unsaturated polyester dengan metode hand lay-up untuk aplikasi otomotif,‖ p.
, 2017, [Online]. Available: http://repository.its.ac.id/43277/.
Akca, E. dan A. Gursel. 2018. A Review on the Matrix Toughness of Thermoplastic Materials. Periodicals of Engineering and Natural Sciences 3(2): 1-8.
ASM Metal Handbook Vol. 21.
ASTM D790-02, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and ,Electrical Insulating Materials.
Bledzki, A.K., Faruk, O., Sperber, V.E. 2006. Cars from Bio-Fibers.
Macromolecular Materials Engineering 291: 449-457.
Callister, W. D. and J. D. G. Rethwisch. 2009. Materials Science and Engineering an Introduction. 8th ed. Wiley: John Wiley & Sons, Inc. E-Book.
Campbell, F. C. 2010. Structural Composite Materials. ASM International The Materials Information Society. E-Book.
Carli, S.A. Widyanto dan Ismoyo Haryanto. 2012. ―Analisis Kekuatan Tarik dan Lentur Komposit Serat Gelas Jenis Woven dengan Matriks Epoxy dan Polysester Berlapis Simetri dengan Metoda Manufaktur Hand Lay-Up‖. Teknis. Vol.7, No.1.
D. Sianturi, ―UNIVERSITAS SUMATERA UTARA Poliklinik UNIVERSITAS SUMATERA UTARA,‖ J. Pembang. Wil. Kota, vol. 1, no. 3, pp. 82–91, 2021.
Efri Mahmuda, Shirley Savetlana Dan Sugiyanto., 2013, Pengaruh Panjang Serat Terhadap Kekuatan Tarik Komposit Berpenguat Serat Ijuk Dengan Matrik Epoxy , Jurnal Fema, Volume 1, Nomor 3.
Gaikindo (Gabungan Industri Kendaraan Bermotor Indonesia). 2022. Production Data 2020-2021. http://www.gaikindo.or.id.
Gibson, Ronald F. 1994. ‖ Principle of Composite Material Mechanics‖. Mc Graw Hill. Singapure.
Ghozali, M. Y., H. Sosiati, dan C. Budiantoro. 2017. Karakterisasi Sifat
Tarik Komposit Laminat Hibrid Kenaf. E-Glass/Polyethylene (Pe). Jurnal Material dan Proses Manufaktur 1(1): 31-35.
H. N. Beliu, Y. M. Pellle, and J. U. Jarson, ―Analisa kekuatan tarik dan bending pada komposit widuri - polyester,‖ Lontar, vol. 03, no. 02, pp. 11–20, 2016. Harsi, N. H. Sari, dan Sinarep. 2015. Karakteristik Kekuatan Bending dan Kekuatan Tekan Komposit Serat Hybrid
Kapas/Gelas Sebagai Pengganti Produk Kayu. Dinamika Teknik Mesin 5(2): 59-65.
I. Standard, ―INTERNATIONAL STANDARD Plastics — Determination
of dynamic,‖ vol. 2008, 2008.Kaw, A. K. 2006. Mechanical of Composites Materials. 2nd ed. New York: Taylor & Francis Group. E-Book.
M. Sulaiman and M. H. Rahmat, ―Kajian Potensi Pengembangan Material Komposit Polimer Dengan Serat Alam Untuk Produk Otomotif,‖ Sistem, vol. 4, no. 1, pp. 9–15, 2018.
Mallick K P. 2007. Fiber Reinforced Composite Materials, Manufacture,
and Design. Michigan : CRC Press Taylor and Francis Group.
Maryanti, B., A. A. Sonief, dan S. Wahyudi. 2011. Pengaruh Alkalisasi Komposit Serat Kelapa-Poliester Terhadap Kekuatan Tarik. Jurnal Rekayasa Mesin2(2): 123-129.
Mochamad Nur Hudha, Gatot Eka Pramono, & Roy Waluyo (2019). Pengaruh Variasi Ukuran Mesh Serbuk Gergaji Kayu Kelapa Terhadap Sifat Mekanis Wood Plastic Composite (WPC). Almikanika, vol.1, no.3.
Muslim, J., N. H. Sari, dan E. Dyah. 2013. Analisis Sifat Kekuatan arik dan Kekuatan Bending Komposit Hibryd Serat Lidah Mertua dan Karung Goni Dengan Filler Abu Sekam Padi 5% Bermatrik Epoxy. Dinamika Teknik Mesin 3(1): 26-33.
Pramono, M. D., M. Farid, dan S. T. Wicaksono. 2016. Pengaruh Komposisi Material Biokomposit dengan Matriks Polyester Berpenguat Serat Alam Terhadap Kekuatan Mekanik dan Fisik.Jurnal Teknik ITS 5(2): D212-D215.
Sideris, E., J. Venetis, dan V. Kytopoulus. 2018. The Stiffness of Short and Randomly Distributed Fiber Composites. Wseas Transactions On
Applied And Theoretical Mechanics 13(1): 53-75.
SNI 01-4449-2006. Standar Nasional Indonesia Papan Serat. Badan
Standarisai Nasional: 1-37.
Suddell, B.C. and Evans, W.J. 2015. Natural Fiber Composites in Automotive Applications. In: Natural Fibers, Biopolymers, and Biocomposites (Eds.: Mohanty, Misra, Drzal). CRC Press. pp.
-260.
T. Mesin, J. T. Mesin, and F. Teknik, ―Kekuatan Bending Dan Kekuatan Tarik Komposit Berpenguat Serat EcengGondok − Tebu Dengan Matrik Epoxy,‖ 2020
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under creativecommons.org/licenses/by-sa/4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Ilmiah Teknik Kimia have CC-BY-SA or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Ilmiah Teknik Kimia recognize that free access is better than priced access, libre access is better than free access, and libre under CC-BY-SA or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
Jurnal Ilmiah Teknik Kimia is licensed under a Creative Commons Attribution 4.0 International License
YOU ARE FREE TO:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.