Adsorpsi Kromium Heksavalen Pada Larutan Aqueous Menggunakan Arang Kayu Teraktivasi Asam: Studi Isotherm Dan Kinetika




Adsorption, Chromium Hexavalent, Isotherm, Kinetics


This research aims to carry out the adsorption process of hexavalent chromium Cr (VI) utilizing activated charcoal generated from acid-activated wood charcoal using HCl and evaluate the adsorption isotherm and kinetics model. The adsorption procedure was carried out in batches with variations in the Cr (VI) adsorbate concentration, and then the total concentration was finally evaluated using UV-VIS spectrophotometry. The isotherm models employed in this research include the Langmuir, Freundlich, and Temkin isotherm models, while the kinetic models used include pseudo-first order, pseudo-second order, Elovich, and Weber-Morris intraparticle diffusion, which may be estimated using linear regression equations. The findings obtained demonstrate that the adsorption capacity value of acid-activated wood charcoal is 1.1686 mg/g, with the greatest efficiency at 83.9623%. The isotherm model parameters found demonstrate that the Langmuir isotherm model is more acceptable for application in this research with values of R2 = 0.9956, qmax = 1.5126 mg/g, and KL = 0.0783 L/g. The Cr (VI) adsorption kinetics model employing acid-activated wood charcoal follows the pseudo-second-order kinetic equation with values of k2 = 0.0162 g/mg/minute, qe = 0.7927 mg/g, and R2 = 0.9543.


Abilio, T. E., Soares, B. C., José, J. C., Milani, P. A., Labuto, G., & Carrilho, E. N. V. M. (2021). Hexavalent chromium removal from water: adsorption properties of in natura and magnetic nanomodified sugarcane bagasse. Environmental Science and Pollution Research, 28(19), 24816–24829.

Aigbe, U. O., & Osibote, O. A. (2020). A review of hexavalent chromium removal from aqueous solutions by sorption technique using nanomaterials. Journal of Environmental Chemical Engineering, 8(6), 104503.

Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and Interpretation of Adsorption Isotherms. Journal of Chemistry, 2017.

Cazetta, A. L., Vargas, A. M. M., Nogami, E. M., Kunita, M. H., Guilherme, M. R., Martins, A. C., Silva, T. L., Moraes, J. C. G., & Almeida, V. C. (2011). NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption. Chemical Engineering Journal, 174(1), 117–125.

Danarto, Y. (2007). Kinetika Adsorpsi Logam Berat Cr(VI) dengan Adsorben Pasir yang Dilapisi Besi Oksida. Ekuilibrium, 6(2), 65–70.

Dula, T., Siraj, K., & Kitte, S. A. (2014). Adsorption of Hexavalent Chromium from Aqueous Solution Using Chemically Activated Carbon Prepared from Locally Available Waste of Bamboo ( Oxytenanthera abyssinica ) . ISRN Environmental Chemistry, 2014, 1–9.

Edet, U. A., & Ifelebuegu, A. O. (2020). Kinetics, isotherms, and thermodynamic modeling of the adsorption of phosphates from model wastewater using recycled brick waste. Processes, 8(6).

Ersali, S., Hadadi, V., Moradi, O., & Fakhri, A. (2013). Pseudo-second-order kinetic equations for modeling adsorption systems for removal of ammonium ions using multi-walled carbon nanotube. Fullerenes, Nanotubes and Carbon Nanostructures, 150527104639002.

Fadila, M. S., Afandy, M. A., Suhirman, S., & Fuady, M. I. Al. (2023). Studi Kinetika dan Penentuan Dosis Optimum Koagulan FeCl3 dalam Menurunkan Konsentrasi Cu2+ pada Larutan. Reactor Journal of Research on Chemistry and Engineering, 4(2), 60–67.

Gebrekidan, A., & Halefom, A. (2019). The Efficiency of Cactus Leaves and Wood Charcoal as a Potential Low-Cost Adsorbent for Removal of Toxic Heavy Metals from Industrial Effluents. Momona Ethiopian Journal of Science, 10(2), 202.

Georgaki, M. N., & Charalambous, M. (2023). Toxic chromium in water and the effects on the human body: a systematic review. Journal of Water and Health, 21(2), 205–223.

Hubbe, M. A., Azizian, S., & Douven, S. (2019). Implications of Apparent Pseudo-Second-Order Adsorption Kinetics onto Cellulosic Materials: A Review. BioResources, 14(3), 7582–7626.

Islam, M. M., Mohana, A. A., Rahman, M. A., Rahman, M., Naidu, R., & Rahman, M. M. (2023). A Comprehensive Review of the Current Progress of Chromium Removal Methods from Aqueous Solution. Toxics, 11(3), 1–43.

Jang, E. H., Pack, S. P., Kim, I., & Chung, S. (2020). A systematic study of hexavalent chromium adsorption and removal from aqueous environments using chemically functionalized amorphous and mesoporous silica nanoparticles. Scientific Reports, 10(1), 1–20.

Kelany, M. S., El-sawy, M. A. E. A., El-Gendy, A. R., & Beltagy, E. A. (2023). Bioremediation of industrial wastewater heavy metals using solo and consortium Enterobacter spp. Environmental Monitoring and Assessment, 195(11).

Li, J., Yan, L., Yang, Y., Zhang, X., Zhu, R., & Yu, H. (2019). Insight into the adsorption mechanisms of aqueous hexavalent chromium by EDTA intercalated layered double hydroxides: XRD, FTIR, XPS, and zeta potential studies. New Journal of Chemistry, 43(40), 15915–15923.

Lima, É. C., Adebayo, M. A., & Machado, F. M. (2015). Kinetic and equilibrium models of adsorption. In Carbon Nanostructures (Vol. 0, Nomor 9783319188744).

Liu, S. (2015). Cooperative adsorption on solid surfaces. Journal of Colloid and Interface Science, 450, 224–238.

López-Luna, J., Ramírez-Montes, L. E., Martinez-Vargas, S., Martínez, A. I., Mijangos-Ricardez, O. F., González-Chávez, M. del C. A., Carrillo-González, R., Solís-Domínguez, F. A., Cuevas-Díaz, M. del C., & Vázquez-Hipólito, V. (2019). Linear and nonlinear kinetic and isotherm adsorption models for arsenic removal by manganese ferrite nanoparticles. SN Applied Sciences, 1(8), 1–19.

Mansri, A., Benabadji, K. I., Desbrières, J., & François, J. (2009). Chromium removal using modified poly(4-vinylpyridinium) bentonite salts. Desalination, 245(1–3), 95–107.

Markandeya, Shukla, S. P., & Kisku, G. C. (2015). Linear and non-linear kinetic modeling for adsorption of disperse dye in batch process. Research Journal of Environmental Toxicology, 9(6), 320–331.

Megharaj, M., Avudainayagam, S., & Naidu, R. (2003). Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Current Microbiology, 47(1), 51–54.

Mohan, D., Singh, K. P., & Singh, V. K. (2006). Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth. Journal of Hazardous Materials, 135(1–3), 280–295.

Muhammad. (2014). Absorption of β-Carotene Using Palm Shell Activated Carbon: A Kinetic Study. Jurnal Teknologi Kimia Unimal, 3(2), 53–63.

Musah, M., Azeh, Y., Mathew, J., Umar, M., Abdulhamid, Z., & Muhammad, A. (2022). Adsorption Kinetics and Isotherm Models: A Review. Caliphate Journal of Science and Technology, 4(1), 20–26.

Mustikaningrum, M., Cahyono, R. B., & Yuliansyah, A. T. (2022). Adsorption of Methylene Blue on Nano-Crystal Cellulose of Oil Palm Trunk: Kinetic and Thermodynamic Studies. Indonesian Journal of Chemistry, 22(4), 953–964.

Ojembarrena, F. de B., Sammaraie, H., Campano, C., Blanco, A., Merayo, N., & Negro, C. (2022). Hexavalent Chromium Removal from Industrial Wastewater by Adsorption and Reduction onto Cationic Cellulose Nanocrystals. Nanomaterials, 12(23).

Oluyemi, E. A., Oyekunle, J. A. O., & Olasoji, S. O. (2009). A comparative study of the removal of heavy metal ions from synthetic wastewaters using different adsorbents. Adsorption Science and Technology, 27(5), 493–501.

Pakade, V. E., Tavengwa, N. T., & Madikizela, L. M. (2019). Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods. RSC Advances, 9(45), 26142–26164.

Pangeran, A. B., Afandy, M. A., & Sawali, F. D. I. (2023). Efficiency of FeSO4.7H2O as a Coagulant on Chromium Hexavalent Removal Using Coagulation-Flocculation Process : Optimization Using Response Surface Methodology. Jurnal Teknik Kimia dan Lingkungan, 7(2), 123–133.

Pulido-Novicio, L., Hata, T., Kurimoto, Y., Doi, S., Ishihara, S., & Imamura, Y. (2001). Adsorption capacities and related characteristics of wood charcoals carbonized using a one-step or two-step process. Journal of Wood Science, 47(1), 48–57.

Qiu, H., Lv, L., Pan, B. C., Zhang, Q. J., Zhang, W. M., & Zhang, Q. X. (2009). Critical review in adsorption kinetic models. Journal of Zhejiang University: Science A, 10(5), 716–724.

Ragadhita, R., & Nandiyanto, A. B. D. (2021). How to calculate adsorption isotherms of particles using two-parameter monolayer adsorption models and equations. Indonesian Journal of Science and Technology, 6(1), 205–234.

Raut, E. R., Thakur, A. B., & Chaudhari, A. R. (2021). Review on toxic metal ions removal by using activated carbon prepared from natural biomaterials. Journal of Physics: Conference Series, 1913(1).

Rofida, I., Nurjazuli, & Wahyuningsih, N. E. (2018). Efektivitas Arang Aktif Kayu Dengan Variasi Ukuran Adsorben Dan Debit Aliran Dalam Menurunkan Kadar Kadmium (Cd) Pada Limbah Cair Pertanian. Jurnal Kesehatan Masyarakat (e-Journal), 6(6), 150–158.

Saha, R., Mukherjee, K., Saha, I., Ghosh, A., Ghosh, S. K., & Saha, B. (2013). Removal of hexavalent chromium from water by adsorption on mosambi (Citrus limetta) peel. Research on Chemical Intermediates, 39(5), 2245–2257.

Sen, M., & Ghosh Dastidar, M. (2010). Review CHROMIUM REMOVAL USING VARIOUS BIOSORBENTS. J. Environ. Health. Sci. Eng, 7(3), 182–190.

Sharma, S. K., Petrusevski, B., & Amy, G. (2008). Chromium removal from water: A review. Journal of Water Supply: Research and Technology - AQUA, 57(8), 541–553.

Simonin, J., & Boute, J. (2016). Intraparticle diffusion-adsorption model to describe liquid / solid adsorption kinetics To cite this version : CONTENIDO MODEL TO DESCRIBE. Revista Mexicana De Ingenieria Quimica, 15(1), 161–173.

Sultana, M., Rownok, M. H., Sabrin, M., Rahaman, M. H., & Alam, S. M. N. (2022). A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption. Cleaner Engineering and Technology, 6, 100382.

Tran, H. N. (2023). Applying Linear Forms of Pseudo-Second-Order Kinetic Model for Feasibly Identifying Errors in the Initial Periods of Time-Dependent Adsorption Datasets. Water (Switzerland), 15(6).

Tumolo, M., Ancona, V., De Paola, D., Losacco, D., Campanale, C., Massarelli, C., & Uricchio, V. F. (2020). Chromium pollution in European water, sources, health risk, and remediation strategies: An overview. International Journal of Environmental Research and Public Health, 17(15), 1–25.

Vigdorowitsch, M., Pchelintsev, A., Tsygankova, L., & Tanygina, E. (2021). Freundlich isotherm: An adsorption model complete framework. Applied Sciences (Switzerland), 11(17), 1–7.

Wang, B., Lan, J., Bo, C., Gong, B., & Ou, J. (2023). Adsorption of heavy metal onto biomass-derived activated carbon: review. RSC Advances, 13(7), 4275–4302.

Yogeshwaran, V., & Priya, A. K. (2016). Removal of Hexavalent Chromium (Cr6+) Using Different Natural Adsorbents - A Review. Journal of Chromatography & Separation Techniques, 08(06), 1–20.

Zhang, Y., Zhao, J., Jiang, Z., Shan, D., & Lu, Y. (2014). Biosorption of Fe(II) and Mn(II) ions from aqueous solution by rice husk ash. BioMed Research International, 2014.




How to Cite

Afandy, M. A., & Sawali, F. D. I. (2024). Adsorpsi Kromium Heksavalen Pada Larutan Aqueous Menggunakan Arang Kayu Teraktivasi Asam: Studi Isotherm Dan Kinetika. Jurnal Ilmiah Teknik Kimia, 8(1), 1–14.