Sintesa dan Karakteristik Karbon Aktif dari Batang Pisang Kepok (Musa acuminata) Sebagai Adsorben pada Penjernihan Minyak Goreng Bekas

Authors

  • Andini Primastiyaningayu UPN "Veteran" Jawa Timur
  • Erika Indri Rismala UPN "Veteran" Jawa Timur
  • Nurul Widji Triana UPN "Veteran" Jawa Timur

DOI:

https://doi.org/10.32493/jitk.v8i2.40221

Keywords:

Banana kepok stems, activated carbon, activation, used cooking oil, adsorption

Abstract

Kepok banana stems have a cellulose content of 58.6466%. The cellulose content means that Kepok banana stems can be used as a basic ingredient for making active carbon. Activated carbon is a material that has high porosity and can be used for absorption which can remove impurities liquid or gas. Process for making activated carbon is cutting banana stems into small pieces and washed, then drying with sun during 7 days. After that, carbonized at 300℃ for 1 hour. Carbonizasition product were ground and sieved with a 100 mesh sieve and activated with NaOH 0.5; 0.75; 1; 1.25 and 1.5 N for 12; 18; 24; 30; and 36 hours. Then, drying in oven at temperature of 100℃ until constant weight. The best activated carbon is activator concentration of 1.5 N NaOH for 12 hours with a water content of 7.8496%, ash content of 9.7186%, and bound carbon content of 65.3479%. SEM test results of activated carbon from banana stems before application have a porous morphological structure and after application the active carbon pores are seen to be closed. Percentage reduction FFA reach 94.8057% and the reduction peroxide reach 86.8978%.

References

Ahmadi, M., & Seyedin, S. H. (2019). Investigation of NaOH Properties, Production and Sale Mark in the world. Journal of Multidisciplinary Engineering Science and Technology (JMEST) , 6(10), 10809–10813.

Atkins, P., & Paula, J. D. (2006). Atkin’s Physical Chemistry. W. H. Freemand and Company.

Badan Pusat Statistik. (2023, June 6). Produksi Tanaman Buah-buahan.

Berliany, N. A., Hidayat, N. A., Budiastuti, H., & Widiastuti, E. (2023). Pengaruh konsentrasi aktivator NaOH terhadap kinerja karbon aktif kulit kacang tanah sebagai adsorben fosfat dalam limbah laundry . Jurnal Teknik Kimia, 29(2), 54–61.

Dewi, R., Azhari, A., & Nofriadi, I. (2021). Aktivasi Karbon Dari Kulit Pinang Dengan Menggunakan Aktivator Kimia Koh. Jurnal Teknologi Kimia Unimal, 9(2), 12. https://doi.org/10.29103/jtku.v9i2.3351

Ekawati, C. J. K. (2023). Alternatif Bahan Baku Arang Aktif. Rena Cipta Mandiri. https://books.google.co.id/books?id=_FKwEAAAQBAJ

Fiqriawan, M. R., Anas, M., & Erniwati. (2023). Efek Variasi Konsentrasi H3PO4 Terhadap Kualitas Karbon Aktif Cangkang Kemiri Berdasarkan Analisis Proksimat. Einstein’s: Research Journal of Applied Physics, 1(2), 42–47.

Husin, A., & Hasibuan, A. (2020). Studi Pengaruh Variasi Konsentrasi Asam Posfat (H3PO4) dan Waktu Perendaman Karbon terhadap Karakteristik Karbon Aktif dari Kulit Durian. Jurnal Teknik Kimia USU, 9(2), 80–86. https://doi.org/10.32734/jtk.v9i2.3728

Husnah, M., Lubis, R. Y., & Astari, L. (2023). Peranan Akivator Dan Luas Penampang Karbon Aktif Terhadap Kemampuan Adsorpsi Karbon Aktif Pada Minyak Goreng Bekas Pakai. Journal Online Of Physics. https://api.semanticscholar.org/CorpusID:265079879

Irawan, C., Awalia, T. N., & W.P.H, S. U. (2013). Pengurangan Kadar Asam Lemak Bebas (Free Fatty Acid) Dan Warna Dari Minyak Goreng Bekas Dengan Proses Adsorpsi Menggunakan Campuran Serabut Kelapa Dan Sekam Padi. Jurnal Konversi Unlam, 2(2), 28. https://doi.org/10.20527/k.v2i2.82

Kurniati, Y., Septiani, E. L., Prastuti, O. P., Purnomo, V., Dewi, S. S. N., & Mahmuddin, I. (2020). Pengaruh Waktu Terhadap Temperatur Aktivasi dari Kulit Pisang (Musa paradisiaca L.) dalam Pembuatan Katalis. Jurnal Teknik Kimia Dan Lingkungan, 4(1), 33–37. https://doi.org/10.33795/jtkl.v4i1.134

Nurrahman, A., Permana, E., Gusti, D. R., & Lestari, I. (2021). Pengaruh Konsentrasi Aktivator Terhadap Kualitas Karbon Aktif dari Batubara Lignit. Jurnal Daur Lingkungan, 4(2), 44. https://doi.org/10.33087/daurling.v4i2.86

Pine, A. T. D., Base, N. H., & Angelina, J. B. (2021). Produksi Dan Karakterisasi Serbuk Selulosa Dari Batang Pisang (Musa paradisiaca L.). Jurnal Kesehatan Yamasi Makassar, 5(2), 115–120.

Ramadhani, L. F., Imaya M. Nurjannah, Ratna Yulistiani, & Erwan A. Saputro. (2020). Review: teknologi aktivasi fisika pada pembuatan karbon aktif dari limbah tempurung kelapa. Jurnal Teknik Kimia, 26(2), 42–53. https://doi.org/10.36706/jtk.v26i2.518

Ridhuan, K., & Irawan, D. (2020). Energi Terbarukan Pirolisis. Laduny Alifatama.

Saban, A., Jasruddin, J., & Husain, H. (2023). Pengaruh Konsentrasi Aktivator (Naoh Dan Hcl) Terhadap Karakteristik Karbon Aktif Dari Tongkol Jagung. Jurnal Sains Dan Pendidikan Fisika, 19(2), 219. https://doi.org/10.35580/jspf.v19i2.45044

Safariyanti, S. J., Rahmalia, W., & Shofiyani, A. (2018). Sintesis Dan Karakterisasi Karbon Aktif Dari Tempurung Buah Nipah (Nypa Fruticans) Menggunakan Aktivator Asam Klorida. Jurnal Kimia Khatulistiwa, 7(2), 41–46.

Suziyana, S., Daud, S., & Edward, H. S. (2017). Pengaruh Massa Adsorben Batang Pisang dan Waktu Kontak Adsorpsi terhadap Efisiensi Penyisihan Fe dan Kapasitas Adsorpsi pada Pengolahan Air Gambut. Jurnal Online Mahasiswa Fakultas Teknik Universitas Riau, 4(1), 1–9.

Utari, W., Hasan Dr. dr. Wirsal, M. P. H., & Dharma dr. Surya, M. P. H. (2014). Efektifitas Karbon Aktif dalam Menurunkan Kadar Bilangan Peroksida dan Penjernihan Warna pada Minyak Goreng Bekas. Lingkungan Dan Keselamatan Kerja, 3(2).

Viswanathan, B., Neel, P. I., & Varadarajan, T. K. (2009). Methods of Activation and Specific Applications of Carbon Materials . Indian Institute of Technology Madras.

Downloads

Published

2024-08-19

How to Cite

Primastiyaningayu, A., Rismala, E. I., & Triana, N. W. (2024). Sintesa dan Karakteristik Karbon Aktif dari Batang Pisang Kepok (Musa acuminata) Sebagai Adsorben pada Penjernihan Minyak Goreng Bekas. Jurnal Ilmiah Teknik Kimia, 8(2), 83–90. https://doi.org/10.32493/jitk.v8i2.40221