Pembuatan Arang Aktif Nanopartikel Kulit Nangka Menggunakan High Energy Milling dengan Aktivator H3PO4

Authors

  • Annisa Nur Safitri Universitas Pembangunan Nasional "Veteran" Jawa Timur
  • Muhammad Faris Al Ghifary Universitas Pembangunan Nasional “Veteran” Jawa Timur
  • Nurul Widji Triana Universitas Pembangunan Nasional “Veteran” Jawa Timur
  • Kindriari Nurma Wahyusi Universitas Pembangunan Nasional “Veteran” Jawa Timur

DOI:

https://doi.org/10.32493/jitk.v8i2.40834

Keywords:

High Energy Milling, Active Charcoal, Jackfruit Peel, Nanoparticles, Phosporic Acid

Abstract

Activated charcoal is a compound formed from the arrangement of C atoms with a porous internal structure so that it has adsorption properties. One of the materials that can be used to make activated charcoal is jackfruit peel which contains cellulose (52.739%), lignin (10.599%), and hemicellulose (16.913%). Grind it to size of 100 mesh and put it in milling nanoparticles using tools HEM at a speed of 1200 rpm for 2 hours. Next, the activation process was carried out with phosphoric acid compounds and variables of 1 hour, 6 hours, 12 hours, 18 hours, 24 hours and concentrations of 5%, 10%, 15%, 20%, 25%. Samples in powder form were characterized by size, SEM, ash content and water content. Size test results with method Particle Size Analyzer (PSA) was found to be 1.22 nm. SEM test results show that jackfruit peel activated charcoal is composed of particles of diverse size, irregular shape and porous. EDX results showed that the chemical components of activated charcoal were C (57.08%), O (33.30%), Mg (1.33%), Si 1.57%, K 5.73%. Analysis of water content and ash content is the smallest, namely 0.18% and 0.2%.

References

Al Qubeissi M, El-kharouf A and Serhad Soyhan H (eds) (2020) Renewable Energy-Resources. Challenges and Applications. IntechOpen, http://doi.org/10.5772/intechopen.81765

Araujo, G Neto L, Pilis M, (2003), High Energy Ball Mill Processing, Trans Tech Publications, Sao Paulo

Baloga, H., Walanda, D.K., & Hamzah, B. (2019). Pembuatan Arang Dari Kulit Nangka (Artocarpus Heterophyllus) Sebagai Adsorben Terhadap Kadmium Dan Nikel Terlarut. J. Akademika Kim, 8(1), pp. 28-33

Dewi, R Azhari, Nofriadi, I (2020). Aktivasi Karbon Dari Kulit Pinang Dengan Menggunakan Aktivator Kimia Koh. Jurnal Teknologi Kimia Unimal. 9(2).

Budiman, J. A. P., Yulianti, I. M., and Jat, W. N. (2018). Potensi arang aktif dari kulit buah durian ( Durio Zibethinus Murr .) dengan aktivator NaOH sebagai penjernih air sumur. Biota, 3(3), pp. 117–124.

Cooney, D. O. (1980) Activated Charcoal in Medical Applications, Annals of Pharmacotherapy. http://doi.org/10.1177/106002809502901129.

Husin, A. & Hasibuan, A. (2020). Studi Pengaruh Variasi Konsentrasi Asam Posfat (H3PO4) dan Waktu Perendaman Karbon terhadap Karakteristik Karbon Aktif dari Kulit Durian. Jurnal Teknik Kimia USU, 09(2), pp. 80-86

Hydhayat, Y., et al. (2022). Karbon Aktif dari Limbah Daun Jati Menggunakan Aktivator Larutan KOH. Jurnal Teknik Kimia, 16(2).

Kwiatkowski, J (2012). Activated Carbon Classifications, Properties And Applications, Nova Science Publishers, Inc., New York

Madkour, H 2019. Nanoelectronic Materials Fundamentals and Applications, Springer Cham, Swiss

Muhayyat, M. S. (2014). Prarancangan Pabrik Arang Aktif dari BFA dengan Aktifasi Kimia Menggunakan KOH Kapasitas 2.500 Ton/Tahun. lim(2009), pp. 1–25.

Oktaviani, T., Taer, E., dan Farma, R. 2013. Efek Variasi Kalium Hidroksida Pada Pengaktifan Arang Tempurung Kelapa Terhadap Kelembaban. Repository FMIPA Universitas Riau, 1 – 4

Saha, B. C. (2004). Lignocellulose biodegradation and application in biotechnology. Peoria: United States Department of Agricultural.

Santoso, E Purwanti, A. (2020). Pirolisis Limbah Kulit Nangka Menjadi Arang Aktif Dan Asap Cair Dengan Aktivator Natrium Klorida (NaCl). Jurnal Inovasi Proses, 5(1).

Saputri, L Ma’ruf A. (2023). Pembuatan Karbon Aktif Bunga Pinus Menggunakan Aktivasi Mekanik Dengan Metode High Energy Milling. Techno, Vol. 24, No. 1, Hal. 11-18

Setyawan, M. & Jamilatun, S. (2014). Pembuatan Arang Aktif dari Tempurung Kelapa dan Aplikasinya untuk Penjernihan Asap Cair. Spektrum Industri, 12(1), pp. 1-112.

Setyawan, M. N., et al. (2018). Arang kulit kacang tanah teraktivasi H3PO4 sebagai Adsorben Ion logam Cu(II) dan diimobilisasi dalam bata beton. Indones, J. Chem. Sci., 7(3), pp. 262-269.

Sudrajat, R. Dan Gustan Pari, (2011), Teknologi Pengolahan Dan Masa Depannya, Badan Penelitian Dan Pengembangan Kehutanan, Jakarta.

Verayana, Paputungan, M., & Iyabu, H (2018). Pengaruh Aktivator HCl dan H3PO4 terhadap Karakteristik (Morfologi Pori) Arang Aktif Tempurung Kelapa serta Uji Adsorpsi pada Logam Timbal (Pb). Jurnal Entropi, 13(1), pp. 67-75.

Widarti, E. (2013). Identifikasi Sifat Fisik Buah Nangka. J. Keteknikan Pertanian Tropis Dan Biosistem, 1(3), pp. 224-230.

Wijaya, L. S., Afuza, D.S., & Kurniati, E. (2022). Arang Aktif Serbuk Kayu Jati Menggunakan Aktivator H3PO4 Dan Modifikasi TiO2. Jurnal Teknik Kimia, 16(2), pp. 73-79

Wulandari, F., Erlina, R. A. Bintoro, E. Budi, Umiatin, and H. Nasbey. (2003). Pengaruh Temperatur Pengeringan Pada Aktivasi Arang Tempurung Kelapa Dengan Asam Klorida Dan Asam Fosfat Untuk Penyaringan Air Keruh. Prosiding Seminar Nasional Fisika, 3. Pp. 289–293.

Yusmaniar, (2014). Pengaruh Waktu Reaksi Dalam Sintesis Besi Bervalensi Nol (Zvi) Dari Feso4 Dengan Ekstrak Polifenol Kulit Pisang Kepok. Jurnal Riset Sains dan Kimia Terapan, 4(2)

Downloads

Published

2024-08-19

How to Cite

Safitri, A. N., Faris Al Ghifary, M., Widji Triana, N., & Nurma Wahyusi , K. (2024). Pembuatan Arang Aktif Nanopartikel Kulit Nangka Menggunakan High Energy Milling dengan Aktivator H3PO4. Jurnal Ilmiah Teknik Kimia, 8(2), 116–123. https://doi.org/10.32493/jitk.v8i2.40834