PEMBUATAN DAN OPTIMASI SENSOR WARNA LOGAM BESI TERLARUT DALAM AIR DENGAN MATRIKS KARAGENAN

Authors

  • Nindita Clourisa Amaris Susanto Universitas Jambi
  • Dwi Siswanta Universitas Gadjah Mada

DOI:

https://doi.org/10.32493/jitk.v4i2.5652

Abstract

Karagenan merupakan polimer alam anionik yang mempunyai sifat hidrogel. Kemampuan tersebut memberikan kemungkinan karagenan dijadikan matriks untuk sensor logam besi di dalam air. Sensor logam besi diukur sebagai ion Fe2+. Ion Fe2+ mempunyai kemampuan membentuk kompleks stabil dengan fenantrolin dan memberikan warna jingga. Dalam Pengembangan sensor warna didasarkan pada imobilisasi gugus kromofor pada material pendukung. Oleh karena itu pada penelitian dilakukan pembuatan sensor warna dengan gugus kromofor kompleks Fe2+ dengan fenantrolin di dalam mtriks karagenan. Hasil penelitian diperoleh modifikasi matriks dalam bentuk beads campuran karagenan kappa dan iota sehingga menghasilkan sensor warna tanpa pelindian. Hasil sensor warna divisualisasi dengan mata dan spektrofotometer UV-Vis. Kondisi optimum yang diperoleh dari penelitian meliputi panjang gelombang maksimum 510 nm, konsentrasi fenantrolin yang diimobilisasi 3000 mg L-1 volume total larutan pembuat beads, pH larutan besi adalah 2, dan waktu kompleksasi 15 menit.

Author Biography

Nindita Clourisa Amaris Susanto, Universitas Jambi

Program Studi Kimia, Fakultas Sains dan Teknologi, Universitas Jambi

References

Adhikamsetty, R. K., Gollapalli, N. R., & Jonnalagadda, S. B. (2008). Complexation kinetics of Fe2+ with 1,10-phenanthroline forming ferroin in acidic solutions. In International Journal of Chemical Kinetics (Vol. 40, Issue 8, pp. 515–523). https://doi.org/10.1002/kin.20336

Azmi, N. A., Ahmad, S. H., & Low, S. C. (2018). Detection of mercury ions in water using a membrane-based colorimetric sensor. RSC Advances, 8(1), 251–261. https://doi.org/10.1039/c7ra11450h

Chochorek, A., Bobrowski, A., Kiralyova, Z., & Mocak, J. (2010). ICP-OES Determination of Select Metals in Surface Water – a Metrological Study. 19(1), 59–64.

Dragan, E. S., Felicia, D., Loghin, A., & Cocarta, A. I. (2014). E ffi cient Sorption of Cu 2 + by Composite Chelating Sorbents Based on Potato Starch- graf t -Polyamidoxime Embedded in Chitosan Beads.

Huang, X., Hao, Y., Wu, H., Guo, Q., Guo, L., Wang, J., Zhong, L., Lin, T., Fu, F., & Chen, G. (2014). Sensors and Actuators B : Chemical Magnetic beads based colorimetric detection of mercuric ion. Sensors & Actuators: B. Chemical, 191, 600–604. https://doi.org/10.1016/j.snb.2013.10.025

Kologo, S., Eyraud, M., Bonou, L., Vacandio, F., & Massiani, Y. (2007). Voltametry and EQCM study of copper oxidation in acidic solution in presence of chloride ions. In Electrochimica Acta (Vol. 52, Issue 9, pp. 3105–3113). https://doi.org/10.1016/j.electacta.2006.09.052

Kumar, S. A., Thakur, N., Parab, H. J., Pandey, S. P., Shinde, R. N., Pandey, A. K., Kumar, S. D., & Reddy, A. V. R. (2014). Analytica Chimica Acta A visual strip sensor for determination of iron. Analytica Chimica Acta, 851, 87–94. https://doi.org/10.1016/j.aca.2014.08.047

Lagerström, M. E., Field, M. P., Séguret, M., Fischer, L., Hann, S., & Sherrell, R. M. (2013). Automated on-line fl ow-injection ICP-MS determination of trace metals ( Mn , Fe , Co , Ni , Cu and Zn ) in open ocean seawater : Application to the GEOTRACES program. Marine Chemistry, 155, 71–80. https://doi.org/10.1016/j.marchem.2013.06.001

Li, C., Hein, S., & Wang, K. (2013). Chitosan-Carrageenan Polyelectrolyte Complex for the Delivery of Protein Drugs. ISRN Biomaterials, 2013, 1–6. https://doi.org/10.5402/2013/629807

Necas, J., & Bartosikova, L. (2013). Carrageenan : a review. 2013(4), 187–205.

Ondigo, D. A., Tshentu, Z. R., & Torto, N. (2013). Analytica Chimica Acta Electrospun nanofiber based colorimetric probe for rapid detection of Fe 2 + in water. Analytica Chimica Acta, 804, 228–234. https://doi.org/10.1016/j.aca.2013.09.051

Popa, E. G., Gomes, M. E., & Reis, R. L. (2011). Cell Delivery Systems Using Alginate − Carrageenan Hydrogel Beads and Fibers for Regenerative Medicine Applications.

Rajendraprasad, N., & Basavaiah, K. (2010). Highly Sensitive Spectrophotometric Determination of Olanzapine Using Cerium ( IV ) and Iron ( II ) Complexes of 1 , 10 Phenanthroline and 2 , 2 ’ Bipyridyl 1. 65(5), 482–488. https://doi.org/10.1134/S1061934810050084

Sari, N., & Sugiarso, D. (2015). Studi Gangguan Mg(II) dalam Analisa Besi(II) dengan Pengompleks O-fenantrolin Menggunakan Spektrofotometri UV-Vis. In Jurnal Sains dan Seni ITS (Vol. 4, Issue 1, pp. 8–12).

Sharif, T., Niaz, A., Najeeb, M., Zaman, M. I., Ihsan, M., & Sirajuddin. (2015). Isonicotinic acid hydrazide-based silver nanoparticles as simple colorimetric sensor for the detection of Cr3+. Sensors and Actuators B: Chemical, 216, 402–408. https://doi.org/10.1016/j.snb.2015.04.043

Tautkus, S., Steponeniene, L., & Kazlauskas, R. (2006). Determination of iron in natural and mineral waters by flame atomic absorption spectrometry. 69(5), 393–402.

Terra, I. A. A., Mercante, L. A., Andre, R. S., & Correa, D. S. (2017). Fluorescent and colorimetric electrospun nanofibers for heavy-metal sensing. In Biosensors (Vol. 7, Issue 4). https://doi.org/10.3390/bios7040061

Woźnica, E., Wójcik, M. M., Wojciechowski, M., Mieczkowski, J., Bulska, E., Maksymiuk, K., & Michalska, A. (2012). Dithizone modified gold nanoparticles films for potentiometric sensing. In Analytical Chemistry (Vol. 84, Issue 10, pp. 4437–4442). https://doi.org/10.1021/ac300155f

Zhang, C., Li, H., Yu, Q., Jia, L., & Wan, L. Y. (2019). Poly(aspartic acid) Electrospun Nanofiber Hydrogel Membrane-Based Reusable Colorimetric Sensor for Cu(II) and Fe(III) Detection. ACS Omega. https://doi.org/10.1021/acsomega.9b02109

Downloads

Published

2020-08-30

How to Cite

Susanto, N. C. A., & Siswanta, D. (2020). PEMBUATAN DAN OPTIMASI SENSOR WARNA LOGAM BESI TERLARUT DALAM AIR DENGAN MATRIKS KARAGENAN. Jurnal Ilmiah Teknik Kimia, 4(2), 60–67. https://doi.org/10.32493/jitk.v4i2.5652