Penerapan Metode Naïve Bayes dan Weighted Product untuk Prediksi Lanjut Studi Peserta Didik

Authors

  • Muhammad Dahlan Kurnia Universitas Pamulang
  • Tukiyat Tukiyat Universitas Pamulang
  • Makhsun Makhsun Universitas Pamulang

Keywords:

Prediksi, Yayasan Pendidikan, Naïve Bayes, Weighted Product, Confusion Matrix.

Abstract

The low interest of students at the Hidayaturrohman Teluknaga Foundation to continue their education from MTs Hidayaturrohman to Hiro High School makes it necessary to look for the factors causing this lack of interest. This study aims to combine the application of advanced study predictions of students using the naïve Bayes method and the application of ranking with the weighted product method. The data for this research object are graduates of MTs Hidayaturohman in 2022. The research sample is 322 data. The data collection method is in the form of secondary data, namely students graduating from MTs Hidayaturrohman in 2022. The attributes used to assess factors for graduates of MTs Hidayaturrohman to continue their studies at Hiro High School consist of 5 attributes, namely hobbies, modes of transportation, parents' income, distance from home to school and school test scores. In the study, 322 data were divided by 85% (273 data) for training data and 15% (49 data) for testing data. The results showed that the Naïve Bayes method could be applied in predicting the further study of students from MTs Hidayaturrohman to Hiro High School. This is evidenced by the accuracy test using the confusion matrix with an accuracy value of 71%. Where from 49 testing data it is predicted that 34 data with advanced results and 15 data with moving results. Furthermore, data ranking using a weighted product was carried out on 316 data, where 50% of the data (158 data) with the highest vector value v entered advanced ranking and the rest entered moving ranking. The 50% figure is in accordance with the expectations of Hiro High School, namely that as many as 50% of MTs Hidayaturrohman graduates continue on to Hiro High School. Then the highest vector v value is 0.005945284 for parent number 19207207 and the lowest vector v value is 0.001552376 for parent number 19207219.

References

Alfi Novia Zahrotul Hidayah, A. F. R. (2021). Penerapan Data Mining Dalam Menentukan Kinerja Karyawan Terbaik Dengan Menggunakan Metode Algoritma C4.5 ( Studi Kasus : Universitas Mercu Buana Yogyakarta ). Journal Of Information System And Artificial Intelligence, 1(2), 73–80.

Aspiah, R., & Taghfirul Azhima Yoga Siswa. (2022). Implementasi Correlation Based Feature Selection (Cfs) Untuk Peningkatan Akurasi Algoritma C4.5 Dalam Prediksi Performa Akademik Mahasiswa Berbasis Learning Management System. Jurnal Ilmiah Betrik, 13(2), 199–207. https://doi.org/10.36050/betrik.v13i2.523

Kartika, J. I., Santoso, E., & Sutrisno. (2017). Penentuan Siswa Berprestasi Menggunakan Metode K-Nearest Neighbor dan Weighted Product (Studi Kasus: SMP Negeri 3 Mejayan). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 1(5), 352–360.

Kurniawan, D. (2020). Pengenalan Machine Learning dengan Python Solusi untuk Permasalahan Big Data.

Maricar, M. A., & Dian Pramana. (2019). Perbandingan Akurasi Naïve Bayes dan K-Nearest Neighbor pada Klasifikasi untuk Meramalkan Status Pekerjaan Alumni ITB STIKOM Bali. Jurnal Sistem Dan Informatika (JSI), 14(1), 16–22.

https://doi.org/10.30864/jsi.v14i1.233

Sahadi, S., Ardhiansyah, M., & Husain, T. (2020). Sistem Pendukung Keputusan Pemilihan Siswa/i Kelas Unggulan Menggunakan Metode AHP dan TOPSIS. Jurnal Teknologi Sistem Informasi, 1(2), 153–167. https://doi.org/10.35957/jtsi.v1i2.513

Wibowo, G. W. N. (2020). Prediksi Kelanjutan Studi Siswa Ke Perguruan Tinggi Dengan Naive Bayes. Jurnal DISPROTEK, 11(1), 41–46. https://doi.org/10.34001/jdpt.v11i1.1159

Published

2023-10-30

How to Cite

Kurnia, M. D., Tukiyat, T., & Makhsun, M. (2023). Penerapan Metode Naïve Bayes dan Weighted Product untuk Prediksi Lanjut Studi Peserta Didik. Jurnal Teknologi Sistem Informasi Dan Aplikasi, 6(4), 730–739. Retrieved from https://openjournal.unpam.ac.id/index.php/JTSI/article/view/33538