Analisis Sentimen Ulasan Pengguna Aplikasi Mobile Banking Menggunakan Algoritma K-Nearest Neighbor
DOI:
https://doi.org/10.32493/jtsi.v7i3.41409Keywords:
Sentiment Analysis; BRImo; BSI Mobile; K-Nearest Neighbor (KNN); Livin’ by Mandiri; Mobile BankingAbstract
Mobile banking is evident in the improvement of business processes in the banking industry. Even so, the m-banking application cannot be separated from the problems experienced by its users. Therefore, further analysis is required. This research proposes a sentiment analysis technique using K-Nearest Neigbor (KNN) algorithm to identify user opinions and reviews of m-banking applications. Three popular m-banking apps were selected for further analysis namely BRImo, BSI Mobile, and Livin' by Mandiri. The analysis shows that BRImo is the most popular m-banking application, with a positive sentiment percentage of 58.25%, Livin' by Mandiri with 22.50%, and BSI Mobile with the lowest percentage of 12.70%. Modeling results using the KNN algorithm with K = 3, 5 and 7 test values show K = 3 has better capabilities. Based on the application, the best modeling is produced on BRImo with 82.9% accuracy, then Livin' by Mandiri with 70.3% accuracy, and BSI Mobile with 71.35% accuracy. Analysis and visualization were also conducted using word clouds to see keywords that are often discussed in reviews. As a result, m-banking apps have problems with difficult login, complicated registration or verification, and balance deduction despite failed transfer status.
References
Adhiim, D. M., & Mahir, P. (2021). Pengaruh E-Service Quality Terhadap E-Customer Loyalty Pada Aplikasi Ovo Melalui E-Customer Satisfaction Sebagai Variabel Intervening. E-Proceeding of Management, 8(6), 206.
Aji Gumelar, P., & Dwi Indriyanti, A. (2023). Penerapan Metode End User Computing Satisfaction dan Technology Acceptance Model dengan Analisis Partial Least Square untuk Mengukur Tingkat Kepuasan Pengguna Aplikasi Livin’ by Mandiri. Jeisbi, 04(2), 52–61. www.tempo.co,
Aliyah Salsabila, N., Ardhito Winatmoko, Y., Akbar Septiandri, A., & Jamal, A. (2018). Colloquial Indonesian Lexicon. Proceedings of the 2018 International Conference on Asian Language Processing, IALP 2018, 226–229. https://doi.org/10.1109/IALP.2018.8629151
Annisa, C., Afdal, M., & Ahsyar, T. K. (2023). Perbandingan Algoritma Naïve Bayes Classifier Dan K-Nearest Neighbor Pada Sentimen Review Aplikasi Mobile Jkn. Jurnal Media Informatika Budidarma, 7(3), 1033–1040. https://doi.org/10.30865/mib.v7i3.6242
Hasibuan, S. S., Angraini, Saputra, E., & Megawati. (2024). Analisis Terhadap Fitur Tiktok Shop Menggunakan Naïve Bayes dan K-Nearest Neighbor. Jurnal Media Informatika Budidarma, 8(1), 303–311. https://doi.org/10.30865/mib.v8i1.7238
Khoirul Insan, M. K., Hayati, U., & Nurdiawan, O. (2023). Analisis Sentimen Aplikasi Brimo Pada Ulasan Pengguna Di Google Play Menggunakan Algoritma Naive Bayes. JATI (Jurnal Mahasiswa Teknik Informatika), 7(1), 478–483. https://doi.org/10.36040/jati.v7i1.6373
Marselina, L., Kaniawulan, I., & Singasatia, H. D. (2022). Analisis Kesuksesan Aplikasi Brimo Dengan Pendekatan Model Delone and Mclean. Jurnal Informatika, Teknologi Dan Sains, 4(3), 193–198. https://doi.org/10.51401/jinteks.v4i3.1951
Novita, R., Rahmadeyan, A., & Vamilina, V. (2022). Implementasi Analytical Hierarchy Process-Topsis Dalam Penentuan Marketplace Terbaik Di Indonesia. Building of Informatics, Technology and Science, 4(2), 1035–1041. https://doi.org/10.47065/bits.v4i2.2232
Nurfadila, N., Ariyanti, M., & Trianasari, N. (2023). Analisis Kualitas Layanan Mobile Banking New Livin’ By Mandiri Menggunakan Sentiment Analysis. JIBR: Journal of Indonesia Business Research, 1(1), 77–82. http://doi.org/10.25124/logic.v1i1.6486
Nurhaliza Agustina, C. A., Novita, R., Mustakim, & Rozanda, N. E. (2024). The Implementation of TF-IDF and Word2Vec on Booster Vaccine Sentiment Analysis Using Support Vector Machine Algorithm. Procedia Computer Science, 234, 156–163. https://doi.org/10.1016/j.procs.2024.02.162
Pratama, M. R., Ramadhan, Y. R., & Komara, M. A. (2023). Analisis Sentimen BRImo dan BCA Mobile Menggunakan Support Vector Machine dan Lexicon Based. Jutisi : Jurnal Ilmiah Teknik Informatika Dan Sistem Informasi, 12(3), 1439–1450. https://doi.org/10.35889/jutisi.v12i3.1431
Pratama, P. F., Rahmadani, D., Nahampun, R. S., Harmutika, D., Rahmadeyan, A., & Evizal, M. F. (2023). Random Forest Optimization Using Particle Swarm Optimization for Diabetes Classification. Public Research Journal of Engineering, Data Technology and Computer Science, 1(1), 41–46.
Puji Astuti, A., Alam, S., & Jaelani, I. (2022). Komparasi Algoritma Support Vector Machine dengan Naive Bayes Untuk Analisis Sentimen Pada Aplikasi BRImo. Jurnal Bangkit Indonesia, 11(2), 1–6. https://doi.org/10.52771/bangkitindonesia.v11i2.196
Putri, A., Syaficha Hardiana, C., Novfuja, E., Try Puspa Siregar, F., Fatma, Y., & Wahyuni, R. (2023). Comparison of K-NN, Naive Bayes and SVM Algorithms for Final-Year Student Graduation Prediction. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 3(1), 20–26. https://doi.org/10.57152/malcom.v3i1.610
Rahmadeyan, A., & Mustakim. (2023). Seleksi Fitur pada Supervised Learning: Klasifikasi Prestasi Belajar Mahasiswa Saat dan Pasca Pandemi COVID-19. Jurnal Nasional Teknologi Dan Sistem Informasi, 9(1), 21–32. https://doi.org/10.25077/TEKNOSI.v9i1.2023.21-32
Rahmadeyan, A., Mustakim, Ahmad, I., Alexander, A. D., & Rahman, A. (2023). Phishing Website Detection with Ensemble Learning Approach Using Artificial Neural Network and AdaBoost. 2023 International Conference on Information Technology Research and Innovation (ICITRI), 162–166. https://doi.org/10.1109/ICITRI59340.2023.10249799
Setyorini, S. G., & Mustakim. (2021). Application of the nearest neighbor algorithm for classification of online taxibike sentiments in indonesia in the google playstore application. Journal of Physics: Conference Series, 2049(1), 12026. https://doi.org/10.1088/1742-6596/2049/1/012026
Syafrizal, S., Afdal, M., & Novita, R. (2023). Analisis Sentimen Ulasan Aplikasi PLN Mobile Menggunakan Algoritma Naïve Bayes Classifier dan K-Nearest Neighbor. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(1), 10–19. https://doi.org/10.57152/malcom.v4i1.983
Wisnu, H., Afif, M., & Ruldevyani, Y. (2020). Sentiment analysis on customer satisfaction of digital payment in Indonesia: A comparative study using KNN and Naïve Bayes. Journal of Physics: Conference Series, 1444(1), 12034. https://doi.org/10.1088/1742-6596/1444/1/012034
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Darwin Munandar, M. Afdal, Zarnelly Zarnelly, Rice Novita
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Teknologi Sistem Informasi dan Aplikasi have CC BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Teknologi Sistem Informasi dan Aplikasi recognize that free access is better than priced access, libre access is better than free access, and libre under CC BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License
YOU ARE FREE TO:
- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms