Optimisasi Desain Jaringan IoT untuk Pelacakan Produk di Rantai Pasok Pertanian: Tinjauan Literatur Sistematis
Keywords:
Internet of Things, Rantai Pasok Pertanian, Teknologi Komunikasi, Infrastruktur Komunikasi, Keamanan DataAbstract
Rantai pasok pertanian adalah salah satu elemen penting dalam ketahanan pangan global, namun menghadapi tantangan besar seperti pemborosan pangan, perubahan iklim, dan permintaan akan transparansi. Internet of Things (IoT) muncul sebagai solusi inovatif untuk mengatasi tantangan tersebut dengan memungkinkan pelacakan produk secara real-time melalui sensor, gateway, dan platform berbasis cloud. Penelitian ini menggunakan pendekatan Systematic Literature Review (SLR) untuk menganalisis beberapa artikel yang relevan, dengan tujuan mengeksplorasi elemen-elemen utama, tantangan, dan strategi dalam desain jaringan IoT untuk rantai pasok pertanian. Hasil penelitian mengidentifikasi lima elemen utama dalam desain jaringan IoT: teknologi komunikasi, arsitektur jaringan, keamanan data, efisiensi energi, dan interoperabilitas. Teknologi seperti Low-Power Wide-Area Networks (LPWAN) menjadi solusi utama untuk wilayah pedesaan dengan keterbatasan infrastruktur. Tantangan utama yang dihadapi dalam implementasi jaringan IoT di sektor pertanian seperti keterbatasan infrastruktur komunikasi, keamanan dan privasi data, kompleksitas manajemen data, dan biaya implementasi yang tinggi. Strategi yang dapat digunakan untuk meningkatkan efisiensi dan keandalan jaringan IoT dalam rantai pasok pertanian seperti penerapan edge computing, integrasi blockchain, optimasi protokol jaringan, teknologi hemat energi, pendekatan hybrid networks. Implementasi IoT dalam rantai pasok pertanian memberikan dampak positif signifikan, termasuk pengurangan pemborosan, peningkatan transparansi, dan optimalisasi sumber daya. Studi ini menyimpulkan bahwa desain jaringan IoT yang optimal sangat penting untuk mendukung keberlanjutan dan efisiensi sistem rantai pasok pertanian, terutama di negara berkembang. Rekomendasi untuk penelitian selanjutnya mencakup integrasi IoT dengan kecerdasan buatan dan pengembangan teknologi hemat energi untuk memperluas adopsi IoT secara global.
References
[1] A. Villa-Henriksen, G. T. C. Edwards, L. A. Pesonen, O. Green, and C. A. G. Sørensen, “Internet of Things in arable farming: Implementation, applications, challenges and potential,” Biosyst Eng, vol. 191, pp. 60–84, 2020, doi: 10.1016/j.biosystemseng.2019.12.013.
[2] R. Sharma, V. Mishra, and S. Srivastava, “Enhancing Crop Yields through IoT-Enabled Precision Agriculture,” in 2023 International Conference on Disruptive Technologies, ICDT 2023, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 279–283. doi: 10.1109/ICDT57929.2023.10151422.
[3] H. Shahab, M. Iqbal, A. Sohaib, F. Ullah Khan, and M. Waqas, “IoT-based agriculture management techniques for sustainable farming: A comprehensive review,” May 01, 2024, Elsevier B.V. doi: 10.1016/j.compag.2024.108851.
[4] O. Elijah, T. A. Rahman, I. Orikumhi, C. Y. Leow, and M. N. Hindia, “An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges,” IEEE Internet Things J, vol. 5, no. 5, pp. 3758–3773, Oct. 2018, doi: 10.1109/JIOT.2018.2844296.
[5] A. Tzounis, N. Katsoulas, T. Bartzanas, and C. Kittas, “Internet of Things in agriculture, recent advances and future challenges,” Dec. 01, 2017, Academic Press. doi: 10.1016/j.biosystemseng.2017.09.007.
[6] A. Y. A. B. Ahmad, N. Verma, N. M. Sarhan, E. M. Awwad, A. Arora, and V. O. Nyangaresi, “An IoT and Blockchain- Based Secure and Transparent Supply Chain Management Framework in Smart Cities Using Optimal Queue Model,” IEEE Access, vol. 12, no. March, pp. 51752–51771, 2024, doi: 10.1109/ACCESS.2024.3376605.
[7] S. A. Bhat, N. F. Huang, I. B. Sofi, and M. Sultan, “Agriculture-Food Supply Chain Management Based on Blockchain and IoT: A Narrative on Enterprise Blockchain Interoperability,” Jan. 01, 2022, MDPI. doi: 10.3390/agriculture12010040.
[8] J. Khoo, S. Haw, N. Su, and S. Mulaafer, “Kiwi Fruit IoT Shelf Life Estimation during Transportation with Cloud Computing,” in 3rd IEEE International Conference on Artificial Intelligence in Engineering and Technology, IICAIET 2021, Institute of Electrical and Electronics Engineers Inc., Sep. 2021. doi: 10.1109/IICAIET51634.2021.9573602.
[9] J. Gillespie et al., “Real-Time Anomaly Detection in Cold Chain Transportation Using IoT Technology,” Sustainability (Switzerland), vol. 15, no. 3, Feb. 2023, doi: 10.3390/su15032255.
[10] N. M. Chacko, V. G. Narendra, M. Balachandra, and S. Rathinam, “Exploring IoT-Blockchain Integration in Agriculture: An Experimental Study,” IEEE Access, vol. 11, pp. 130439–130450, 2023, doi: 10.1109/ACCESS.2023.3334726.
[11] A. Vangala, A. K. Das, N. Kumar, and M. Alazab, “Smart Secure Sensing for IoT-Based Agriculture: Blockchain Perspective,” IEEE Sens J, vol. 21, no. 16, pp. 17591–17607, Aug. 2021, doi: 10.1109/JSEN.2020.3012294.
[12] A. N. Jasim and L. C. Fourati, “Agriculture 4.0 from IoT, Artificial Intelligence, Drone, & Blockchain Perspectives,” in Proceedings - International Conference on Developments in eSystems Engineering, DeSE, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 262–267. doi: 10.1109/DeSE58274.2023.10099927.
[13] F. Marzougui, M. Elleuch, and M. Kherallah, “Literature Review of IoT and Blockchain Technology in Agriculture,” in 2023 24th International Arab Conference on Information Technology, ACIT 2023, Institute of Electrical and Electronics Engineers Inc., 2023. doi: 10.1109/ACIT58888.2023.10453873.
[14] M. R. M. Kassim, “Applications of IoT and Blockchain in Smart Agriculture: Architectures and Challenges,” in 2022 IEEE International Conference on Computing, ICOCO 2022, Institute of Electrical and Electronics Engineers Inc., 2022,
pp. 253–258. doi: 10.1109/ICOCO56118.2022.10031697.
[15] G. Funchal, V. Melo, and P. Leitao, “Cloud-enabled Integration of IoT Applications within the Farm to Fork to Reduce the Food Waste,” in IEEE International Symposium on Industrial Electronics, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 824–829. doi: 10.1109/ISIE51582.2022.9831694.
[16] T. P. da Costa et al., “A Systematic Review of Real-Time Monitoring Technologies and Its Potential Application to Reduce Food Loss and Waste: Key Elements of Food Supply Chains and IoT Technologies,” Jan. 01, 2023, MDPI. doi: 10.3390/su15010614.
[17] M. Lianguang, “Study on supply-chain of modern agricultural products based on IOT in order to guarantee the quality and safety,” Advance Journal of Food Science and Technology, vol. 6, no. 4, pp. 520–526, 2014, doi: 10.19026/ajfst.6.65.
[18] S. Piramuthu, “IoT, Environmental Sustainability, Agricultural Supply Chains,” in Procedia Computer Science, Elsevier B.V., 2022, pp. 811–816. doi: 10.1016/j.procs.2022.08.098.
[19] U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low Power Wide Area Networks: An Overview,” IEEE Communications Surveys and Tutorials, vol. 19, no. 2, pp. 855–873, Apr. 2017, doi: 10.1109/COMST.2017.2652320.
[20] B. Citoni, F. Fioranelli, M. A. Imran, and Q. H. Abbasi, “Internet of Things and LoRaWAN-Enabled Future Smart Farming,” IEEE Internet of Things Magazine, vol. 2, no. 4, pp. 14–19, Feb. 2020, doi: 10.1109/IoTm.0001.1900043.
[21] V. V. Das, A. Sathyan, and D. S. Divya, “Establishing LoRa based Local Agri-Sensor Network through Sensor plugin modules and LoRaWAN Data concentrator for extensive Agriculture Automation,” in INDICON 2022 - 2022 IEEE 19th India Council International Conference, Institute of Electrical and Electronics Engineers Inc., 2022. doi: 10.1109/INDICON56171.2022.10040050.
[22] A. Arnaud et al., “A Model for a Dense LoRaWAN Farm-Area Network in the Agribusiness,” IEEE Transactions on AgriFood Electronics, pp. 1–9, Jul. 2024, doi: 10.1109/tafe.2024.3422843.
[23] C. Rodriguez-Pabon, G. Riva, C. Zerbini, J. Ruiz-Rosero, G. Ramirez-Gonzalez, and J. C. Corrales, “An Adaptive Sampling Period Approach for Management of IoT Energy Consumption: Case Study Approach,” Sensors, vol. 22, no. 4,
pp. 1–22, 2022, doi: 10.3390/s22041472.
[24] S. A. Bhat, N. F. Huang, I. B. Sofi, and M. Sultan, “Agriculture-Food Supply Chain Management Based on Blockchain and IoT: A Narrative on Enterprise Blockchain Interoperability,” Jan. 01, 2022, MDPI. doi: 10.3390/agriculture12010040.
[25] L. Liu et al., “Smart Agricultural Technology An Edge-computing flow meter reading recognition algorithm optimized for agricultural IoT network,” Smart Agricultural Technology, vol. 5, no. April, p. 100236, 2023, doi: 10.1016/j.atech.2023.100236.
[26] J. Han, L. Li, Z. Sun, X. Feng, N. Lin, and J. Ruan, “An integrative decision-making model for the Internet of Things- enabled supply chains of fresh agri-product,” Int J Prod Res, vol. 61, no. 13, pp. 4358–4373, 2023, doi: 10.1080/00207543.2022.2131927.
[27] S. Rudrakar and P. Rughani, “IoT based Agriculture (Ag-IoT): A detailed study on Architecture, Security and Forensics,” 2023, China Agricultural University. doi: 10.1016/j.inpa.2023.09.002.
[28] R. K. Singh, R. Berkvens, and M. Weyn, “AgriFusion: An Architecture for IoT and Emerging Technologies Based on a Precision Agriculture Survey,” 2021, Institute of Electrical and Electronics Engineers Inc. doi: 10.1109/ACCESS.2021.3116814.
[29] M. Hazrati, R. Dara, and J. Kaur, “On-Farm Data Security: Practical Recommendations for Securing Farm Data,” Front Sustain Food Syst, vol. 6, Jun. 2022, doi: 10.3389/fsufs.2022.884187.
[30] M. Gupta, M. Abdelsalam, S. Khorsandroo, and S. Mittal, “Security and Privacy in Smart Farming: Challenges and Opportunities,” IEEE Access, vol. 8, pp. 34564–34584, 2020, doi: 10.1109/ACCESS.2020.2975142.
[31] K. Demestichas, N. Peppes, and T. Alexakis, “Survey on security threats in agricultural IoT and smart farming,” Nov. 02, 2020, MDPI AG. doi: 10.3390/s20226458.
[32] A. A. Aliyu and J. Liu, “Blockchain-Based Smart Farm Security Framework for the Internet of Things,” Sensors, vol. 23, no. 18, Sep. 2023, doi: 10.3390/s23187992.
[33] G. Nota, F. D. Nota, D. Peluso, and A. T. Lazo, “Energy efficiency in Industry 4.0: The case of batch production processes,” Sustainability (Switzerland), vol. 12, no. 16, Aug. 2020, doi: 10.3390/su12166631.
[34] D. Dahiya and S. K. Mathew, “IT infrastructure capability and eGovernment system performance: an empirical study,” Transforming Government: People, Process and Policy, vol. 12, no. 1, pp. 16–38, Jun. 2018, doi: 10.1108/TG-07-2017- 0038.
[35] S. Danshyna, A. Nechausov, S. Andrieiev, and V. Cheranovskiy, “INFORMATION TECHNOLOGY FOR ANALYSIS OF WASTE MANAGEMENT OBJECTS INFRASTRUCTURE,” Radioelectronic and Computer Systems, vol. 2022, no. 2, pp. 97–107, 2022, doi: 10.32620/reks.2022.2.08.
[36] R. Rajora, A. Rajora, R. Singh, and R. Gupta, “IoT Integration in Agricultural Infrastructure: From Fields to Clouds,” in 2023 IEEE International Conference on Research Methodologies in Knowledge Management, Artificial Intelligence and Telecommunication Engineering, RMKMATE 2023, Institute of Electrical and Electronics Engineers Inc., 2023. doi: 10.1109/RMKMATE59243.2023.10369026.
[37] A. Maroli, V. S. Narwane, and B. B. Gardas, “Applications of IoT for achieving sustainability in agricultural sector: A comprehensive review,” Nov. 15, 2021, Academic Press. doi: 10.1016/j.jenvman.2021.113488.
[38] S. Piramuthu, “IoT, Environmental Sustainability, Agricultural Supply Chains,” in Procedia Computer Science, Elsevier B.V., 2022, pp. 811–816. doi: 10.1016/j.procs.2022.08.098.
[39] W. Purcell, T. Neubauer, and K. Mallinger, “Digital Twins in agriculture: challenges and opportunities for environmental sustainability,” Apr. 01, 2023, Elsevier B.V. doi: 10.1016/j.cosust.2022.101252.
[40] T. Alahmad, M. Neményi, and A. Nyéki, “Applying IoT Sensors and Big Data to Improve Precision Crop Production: A Review,” Oct. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/agronomy13102603.
[41] S. A. Bhat and N. F. Huang, “Big Data and AI Revolution in Precision Agriculture: Survey and Challenges,” IEEE Access, vol. 9, pp. 110209–110222, 2021, doi: 10.1109/ACCESS.2021.3102227.
[42] N. N. Misra, Y. Dixit, A. Al-Mallahi, M. S. Bhullar, R. Upadhyay, and A. Martynenko, “IoT, Big Data, and Artificial Intelligence in Agriculture and Food Industry,” IEEE Internet Things J, vol. 9, no. 9, pp. 6305–6324, May 2022, doi: 10.1109/JIOT.2020.2998584.
[43] V. Pachouri, S. Pandey, A. Gehlot, P. Negi, G. Chhabra, and K. Joshi, “Agriculture 4.0: Inculcation of Big Data and Internet of Things in Sustainable Farming,” in Proceedings of IEEE InC4 2023 - 2023 IEEE International Conference on Contemporary Computing and Communications, Institute of Electrical and Electronics Engineers Inc., 2023. doi: 10.1109/InC457730.2023.10263261.
[44] S. Pandey, A. Gehlot, V. Pandey, N. Kathuria, G. Chhabra, and P. K. Malik, “Subsuming AI, IoT and Big Data in Smart Farm Practices,” in Proceedings of 5th International Conference on 2023 Devices for Integrated Circuit, DevIC 2023, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 229–232. doi: 10.1109/DevIC57758.2023.10134816.
[45] Q. Wang and Z. Mu, “Risk monitoring model of intelligent agriculture Internet of Things based on big data,” Sustainable Energy Technologies and Assessments, vol. 53, Oct. 2022, doi: 10.1016/j.seta.2022.102654.
[46] A. M. Aamer and M. A. Al-awlaqi, “The internet of things in the food supply chain : adoption challenges,” vol. 28, no. 8,
pp. 2521–2541, 2021, doi: 10.1108/BIJ-07-2020-0371.
[47] A. (Addis) Benyam, T. Soma, and E. Fraser, “Digital agricultural technologies for food loss and waste prevention and reduction: Global trends, adoption opportunities and barriers,” Nov. 10, 2021, Elsevier Ltd. doi: 10.1016/j.jclepro.2021.129099.
[48] P. Jayashankar, S. Nilakanta, W. J. Johnston, P. Gill, and R. Burres, “IoT adoption in agriculture: the role of trust, perceived value and risk,” Journal of Business and Industrial Marketing, vol. 33, no. 6, pp. 804–821, Oct. 2018, doi: 10.1108/JBIM-01-2018-0023.
[49] S. S. Kamble, A. Gunasekaran, H. Parekh, and S. Joshi, “Modeling the internet of things adoption barriers in food retail supply chains,” Journal of Retailing and Consumer Services, vol. 48, pp. 154–168, May 2019, doi: 10.1016/j.jretconser.2019.02.020.
[50] P. Opasvitayarux, S. O. Setamanit, N. Assarut, and K. Visamitanan, “Antecedents of IoT adoption in food supply chain quality management: an integrative model,” Journal of International Logistics and Trade, vol. 20, no. 3, pp. 135–170, 2022, doi: 10.1108/JILT-05-2022-0002.
[51] M. Rajabzadeh and H. Fatorachian, “Modelling Factors Influencing IoT Adoption: With a Focus on Agricultural Logistics Operations,” Dec. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/smartcities6060145.
[52] S. Taj, A. S. Imran, Z. Kastrati, S. M. Daudpota, R. A. Memon, and J. Ahmed, “IoT-based supply chain management: A systematic literature review,” Dec. 01, 2023, Elsevier B.V. doi: 10.1016/j.IoT.2023.100982.
[53] F. S. Alamri, K. Haseeb, T. Saba, J. Lloret, and J. M. Jimenez, “Multimedia IoT-surveillance optimization model using mobile-edge authentic computing,” Mathematical Biosciences and Engineering, vol. 20, no. 11, pp. 19174–19190, 2023, doi: 10.3934/mbe.2023847.
[54] O. Debauche, S. Mahmoudi, and A. Guttadauria, “Article A New Edge Computing Architecture for IoT and Multimedia Data Management,” Information (Switzerland), vol. 13, no. 2, Feb. 2022, doi: 10.3390/info13020089.
[55] A. Vangala, A. K. Das, N. Kumar, and M. Alazab, “Smart Secure Sensing for IoT-Based Agriculture: Blockchain Perspective,” IEEE Sens J, vol. 21, no. 16, pp. 17591–17607, Aug. 2021, doi: 10.1109/JSEN.2020.3012294.
[56] F. J. Ferrández-Pastor, J. Mora-Pascual, and D. Díaz-Lajara, “Agricultural traceability model based on IoT and Blockchain: Application in industrial hemp production,” J Ind Inf Integr, vol. 29, Sep. 2022, doi: 10.1016/j.jii.2022.100381.
[57] T. Alam, “Blockchain-Based Internet of Things: Review, Current Trends, Applications, and Future Challenges,” Jan. 01, 2023, MDPI. doi: 10.3390/computers12010006.
[58] A. Yudidharma, N. Nathaniel, T. N. Gimli, S. Achmad, and A. Kurniawan, “A systematic literature review: Messaging protocols and electronic platforms used in the internet of things for the purpose of building smart homes,” in Procedia Computer Science, Elsevier B.V., 2023, pp. 194–203. doi: 10.1016/j.procs.2022.12.127.
[59] Z. Zhang, X. Y. Liu, and X. R. Zhang, “The role of artificial intelligence in energy aspects of super cold chain of agricultural products,” Dec. 01, 2022, John Wiley and Sons Ltd. doi: 10.1002/er.8031.
[60] T. Hashni, T. Amudha, and S. Ramakrishnan, “IoT & AI in Smart Farming: Implications and Challenges,” in 7th International Conference on Communication and Electronics Systems, ICCES 2022 - Proceedings, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 501–505. doi: 10.1109/ICCES54183.2022.9835812.
[61] S. Anwarul, T. Misra, and D. Srivastava, “An IoT & AI-assisted Framework for Agriculture Automation,” in 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), ICRITO 2022, Institute of Electrical and Electronics Engineers Inc., 2022. doi: 10.1109/ICRITO56286.2022.9964567.
[62] O. El Ghati, O. Alaoui-Fdili, N. Alioua, O. Chahbouni, and W. Bouarifi, “An overview of the applications of AI- powered Visual IoT systems in agriculture,” in Proceedings - 2023 IEEE International Conference on Advances in Data- Driven Analytics and Intelligent Systems, ADACIS 2023, Institute of Electrical and Electronics Engineers Inc., 2023. doi: 10.1109/ADACIS59737.2023.10424223.
[63] A. Subeesh and C. R. Mehta, “Automation and digitization of agriculture using artificial intelligence and internet of things,” Jan. 01, 2021, KeAi Communications Co. doi: 10.1016/j.aiia.2021.11.004.
[64] R. Das, S. S. Bhatt, S. Kathuria, R. Singh, G. Chhabra, and P. K. Malik, “Artificial Intelligence and Internet of Things Based Technological Advancement in Domain of Horticulture 4.0,” in Proceedings of 5th International Conference on 2023 Devices for Integrated Circuit, DevIC 2023, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 207–
211. doi: 10.1109/DevIC57758.2023.10135061.
[65] R. Singh, C. Prabha, and N. Sharma, “Artificial Internet of Things (AIoT) and its Momentous Impact and Challenges in Modern Agriculture,” in 2023 International Conference on Integration of Computational Intelligent System, ICICIS 2023, Institute of Electrical and Electronics Engineers Inc., 2023. doi: 10.1109/ICICIS56802.2023.10430232.
[66] K. Sharma and S. K. Shivandu, “Integrating artificial intelligence and Internet of Things (IoT) for enhanced crop monitoring and management in precision agriculture,” Jan. 01, 2024, KeAi Communications Co. doi: 10.1016/j.sintl.2024.100292.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.