Implementasi Face Detector sebagai Sistem Pengaman Rumah Berbasis Webcam dan Raspberry Pi

Authors

  • Sutarti Sutarti Universitas Serang Raya
  • Siswanto Siswanto Universitas Serang Raya
  • Noercholish Madjid Sutardi Universitas Serang Raya

DOI:

https://doi.org/10.32493/informatika.v6i3.12127

Keywords:

Face Detector, Haar-cascade, Home Security, Notification, Raspberry Pi

Abstract

Home security is very important to protect ourselves and our wealth from the crime that is increasingly over the time. CCTV installation is an alternative method to increase home security. The disadvantages of using CCTV are not being able to send notifications to homeowners when foreigners are detected and the lack of supervision from the public and security staff. Therefore, it is necessary to develop a system that can detect the presence of unknown people and provide notifications to homeowners. In this study, implementing a face detector as a home security system using a webcam and a Raspberry Pi. The home security system that is built can recognize the faces of the occupants of the house and can open the door automatically. Face recognition uses the Haar-cascade method which compares images captured by a webcam with a database to recognize the faces of residents of the house. When the system detects the faces of the occupants of the house, the system will drive a servo motor as a door opener. The system also sends notifications via Push-Safer to homeowners when the webcam records an unrecognized face.

Author Biographies

Sutarti Sutarti, Universitas Serang Raya

Fakultas Teknologi Informasi

Siswanto Siswanto, Universitas Serang Raya

Fakultas Teknologi Informasi

Noercholish Madjid Sutardi, Universitas Serang Raya

Fakultas Teknologi Informasi

References

Badan Pusat Statistik. (2019). Retrieved August 9, 2019, from Statistik Kriminal 2019 website: https://www.bps.go.id/publication/2019/12/12/66c0114edb7517a33063871f/statistik-kriminal-2019.html

Endra, R. Y., Cucus, A., Afandi, F. N., & Syahputra, M. B. (2018). Deteksi Objek Menggunakan Histogram of Oriented Gradient (HOG) untuk Model Smart Room. Explore:Jurnal Sistem Informasi Dan Telematika(Telekomunikasi, Multimedia Dan Informatika), 9(2). https://doi.org/10.36448/JSIT.V9I2.1075

Enterprise, J. (2018). Aplikasi Face Detector dan Digital Imaging dengan Python. Jakarta: Elex media computindo.

Enterprise, J. (2020). Python untuk Membuat Game hingga Face Detector. Jakarta: Elex Media Computindo.

Kodir, A. (2017). Dasar Raspberry PI – Panduan Praktis untuk Mempelajari Pemrograman Perangkat Keras Menggunakan Raspberry PI Model B. Yogyakarta: CV Andi Offset.

Kosasih, R. (2021). Pengenalan Wajah Menggunakan PCA dengan Memperhatikan Jumlah Data Latih dan Vektor Eigen. Jurnal Informatika Universitas Pamulang, 6(1), 1–6. https://doi.org/10.32493/INFORMATIKA.V6I1.7261

Kurnianto, D., Hadi, A. M., & Wahyudi, E. (2016). Perancangan Sistem Kendali Otomatis pada Smart Home menggunakan Modul Arduino Uno. JURNAL NASIONAL TEKNIK ELEKTRO, 5(2), 260–270. https://doi.org/10.25077/JNTE.V5N2.276.2016

Kurniawan, M., Kurniawan, M. I., Sunarya, U., & Tulloh, R. (2018). Internet of Things : Sistem Keamanan Rumah berbasis Raspberry Pi dan Telegram Messenger. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 6(1), 1. https://doi.org/10.26760/elkomika.v6i1.1

Kurniawan, R., & Zulius, A. (2019). Smart Home Security Menggunakan Face Recognition Dengan Metode Eigenface Berbasis Raspberry Pi. Jurnal Sustainable: Jurnal Hasil Penelitian Dan Industri Terapan, 8(2), 48–56. https://doi.org/10.31629/SUSTAINABLE.V8I2.1484

Natanael, S., Manalu, F. R. G., & Mulyanti, S. (2018). Sistem Pengawasan dan Pengamanan Pada Pintu Rumah Menggunakan Raspberry PI Yang Terhubung Dengan Layanan Cloud Computing Serta Menggunakan Pengenalan Wajah. Jurnal Elektro Unika Atma Jaya, 11(1), 37–46. Retrieved from http://ojs.atmajaya.ac.id/index.php/jte/article/view/1262/995

Sianturi, J., Rahmat, R. F., & Nababan, E. B. (2018). Sistem Pendeteksian Manusia untuk Keamanan Ruangan menggunakan Viola – Jones. Journal of Informatics and Telecommunication Engineering, 1(2), 61–72. https://doi.org/10.31289/JITE.V1I2.1424

Susanto, B. M., Purnomo, F. E., & Fahmi, M. F. I. (2017). Sistem Keamanan Pintu Berbasis Pengenalan Wajah Menggunakan Metode Fisherface. Jurnal Ilmiah Inovasi, 17(1). https://doi.org/10.25047/jii.v17i1.464

Sutarti, S., Samsuni, S., & Asseghaf, I. (2019). Sistem Keamanan Rumah melalui Pengenalan Wajah Menggunakan Webcam dan Library Opencv Berbasis Raspberry Pi. Jurnal Dinamika Informatika, 8(2), 13–26. Retrieved from https://jdi.upy.ac.id/index.php/jdi/article/view/37

Wijaya, I. D., Nurhasan, U., & Barata, M. A. (2017). Implementasi Raspberry Pi untuk Rancang Bangun Sistem Keamanan Pintu Ruang Server dengan Pengenalan Wajah Menggunakan Metode Triangle Face. Jurnal Informatika Polinema, 4(1), 9–9. https://doi.org/10.33795/JIP.V4I1.138

Downloads

Published

2021-09-30