Sequential Pattern Mining untuk Data Transaksi Penjualan Supermarket menggunakan Algoritm Generalized Sequential Pattern

Authors

  • Albert Kurniawan Universitas Kristen Satya Wacana
  • Ramos Somya Universitas Kristen Satya Wacana

DOI:

https://doi.org/10.32493/informatika.v6i3.12483

Keywords:

Market Basket Analysis, West Superstore, Generalized Sequential Pattern, Python

Abstract

Online supermarket sales transaction data is a sequence dataset. This data stores purchase transaction data made by customers, so it can be analyzed using Market Basket Analysis (MBA) approach. The problem that is often experienced by supermarkets is the difficulty of implementing the accurate sales strategy to consumers. Based on these problems, this research will analyze the West Superstore supermarket dataset based on the MBA approach. The algorithm used is the Generalized Sequential Pattern (GSP) algorithm, where this algorithm can generate frequent items and sequence patterns, so that the resulting rules can be more accurate. The GSP algorithm in this study is implemented in the Python programming language. The test results show that the output of Python is in accordance with the output of the GSP algorithm calculation. The time required for rule generation in the GSP algorithm also depends on the number of records being used. The more number of sales transactions to be analyzed, it needs longer time in computation. The analysis conducted on the sales dataset at the West Superstore resulted in 391 rules, where these rules can be used by supermarkets to implement their sales strategies.

References

Agrawal, R. S. (1996). Mining Sequential Patterns: Generalization and Performance Improvements. In 5th International Conference Extending Database Technology (EDBT) (pp. 3–17). Berlin, Heidelberg: Springer. https://doi.org/https://doi.org/10.1007/BFb0014140

Efraim Turban, Jay E. Aronson, T.-P. L. (2007). Decision Support Systems and Intelligent Sistems (Sistem Pendukung Keputusan dan Sistem Cerdas) (Jilid 1) (Edisi 7) (7th ed.). Yogyakarta: Andi.

Eko Prasetyo. (2012). Data Mining-Konsep dan Aplikasi Menggunakan MATLAB. Yogyakarta: Andi.

Gregorius Satia Budhi, Andreas Handojo, C. O. W. (2009). Algoritma Generalized Sequential Pattern untuk Menggali Data Sekuensial Sirkulasi Buku pada Perpustakaan UK Petra. In Seminar Nasional Aplikasi Teknologi Informasi (SNATI).

Gunawan Gunawan Gunawan, Alex Xandra Albert Sim, M Hawari Simanullang, M Firkhan Siregar, F. H. (2015). Pengembangan Aplikasi Market Basket Analysis Menggunakan Algoritma Generalized Sequential Pattern pada Supermarket. In Seminar Nasional Aplikasi Teknologi Informasi (SNATI) (pp. 1–6).

Haskett. (2000). An Introduction to Data Mining, Part 1: Understanding The Critical Data Relationship in The Corporate Data Warehouse. Enterprise System Journal, 15, 32–34.

Jiawei Han, Jian Pei, dan Y. Y. (2000). Mining Frequent Patterns without Candidate Generation. In SIGMOD ’00 Proceedings of the 2000 ACM SIGMOD international conference on Management of data. Dallas, Texas.

Jiawei Han, Micheline Kamber, J. P. (2012). Data Mining: Concepts and Techniques. Waltham, USA: Morgan Kaufmann. Retrieved from https://www.sciencedirect.com/book/9780123814791/data-mining-concepts-and-techniques

Larose, D. T. (2005). Data Mining Methods and Models. New Jersey: John Wiley & Sons, Inc. https://doi.org/10.1002/0471756482

Manpreet Kaur, S. K. (2016). Market Basket Analysis: Identify the Changing Trends of Market Data Using Association Rule Mining. Procedia Computer Science, 85, 78–85. https://doi.org/https://doi.org/10.1016/j.procs.2016.05.180

Nilam Ramadhani, Abd Wahab Syahroni, Arin Supikar, W. Z. (2020). Penerapan Market Basket Analysis Menggunakan Metode Multilevel Association Rules dan Algoritma ML_T2L1 Pada Data Order PT. Unirama. Jurnal Nasional Informatika Dan Teknologi Jaringan, 4(2), 71–84. https://doi.org/https://doi.org/10.30743/infotekjar.v4i2.2405

Rizky Bayu Novrianto, M. (2020). Penerapan Metode Market Basket Analysis pada Minimarket Toko Baru. Indonesian Journal of Data and Science, 1(1), 01–05. https://doi.org/https://doi.org/10.33096/ijodas.v1i1.2

Srikant, R. A. R. (1995). Mining Sequential Patterns. In Proceedings of the Eleventh International Conference on Data Engineering. Taipei, Taiwan, Taiwan: IEEE. https://doi.org/10.1109/ICDE.1995.380415

Srinivasa Kumar, R. Renganathan, C. VijayaBanu, dan I. R. (2018). Consumer Buying Pattern Analysis using Apriori Association Rule. International Journal of Pure and Applied Mathematics, 119(7), 2349–2350. Retrieved from https://acadpubl.eu/jsi/2018-119-7/articles/7c/54.pdf

Tresna Yudha Prawira, Sunardi Sunardi, A. F. (2020). Market Basket Analysis To Identify Stock Handling Patterns & Item Arrangement Patterns Using Apriori Algorithms. Jurnal Ilmu Komputer Dan Informatika, 6(1), 33–41. https://doi.org/https://doi.org/10.23917/khif.v6i1.8628

Zaki, M. (1997). Fast Mining of Sequential Patterns in Very Large Databases. New York.

Downloads

Published

2021-09-30