Reduksi Fitur untuk Optimasi Prediksi Penyakit Ginjal Kronis menggunakan Radial Basis Function Neural Network
DOI:
https://doi.org/10.32493/informatika.v7i2.12550Keywords:
reduksi fitur, Principal Component Analysis, Linear Discriminant Analysis, penyakit ginjal kronisAbstract
Penyakit ginjal kronis menjadi salah satu penyebab kematian di dunia. Penderita penyakit ginjal kronis memerlukan perawatan yang cukup serius. Kenyataannya gejala dari penyakit ginjal kronis tidak dapat diketahui secara langsung, melainkan secara bertahap hingga kondisi ginjal pasien sudah tidak berfungsi dengan baik dan sulit disembuhkan. Karena itu menjadi penting untuk dapat mendeteksi sedini mungkin kemungkinan pasien menderita penyakit ginjal kronis. Prediksi penyakit ginjal kronis sudah cukup banyak dilakukan dengan berbagai metode data mining dan machine learning. Penelitian ini membandingan tiga metode reduksi fitur, yaitu Principal Component Analysis, Liniear Discriminant Component, serta gabungan Principal Component Analysis dan Linear Discriminant Analysis untuk mengoptimalkan prediksi penyakit ginjal kronis. Pada tahap pelatihan dan pengujian digunakan metode klasifikasi Radial Basis Function Neural Network. Hasil uji menunjukkan bahwa metode reduksi fitur gabungan Principal Analysis Component dan Linear Discriminant Analysis menunjukkan performa terbaik dengan nilai akurasi, recall, dan precision secara berturut-turut sebesar 93,5%, 91,1% dan 97,7%.
References
Purwanto D. (2013). Penyakit Ginjal Kronik yang Terjadi pada Pasien dengan Faktor Risiko Hipertensi. MEDULA vol.1, no. 1.
Kemenkes. (2018). Situasi Penyakit Ginjal Kronik. Pusat Data dan Informasi Kemenkes RI, 2018.
Rostanti, A., Bawotong, J., dan Onibala, F. (2016). Faktor-Faktor yang Berhubungan dengan Kepatuhan Menjalani Terapi Hemodialisa pada Penyakit Ginjal Kronik di Ruangan Dahlia dan Melati RSUP Prof. Dr. R. D Kandau Manado. Ejournal Keperawatan, 4 nomor 2.
Wisnuadji dan Waspada. (2020). Implementasi Data Mining untuk Deteksi Penyakit Ginjal Kronis (PGK) Menggunakan K-Nearest Neighbor (KNN) dengan Backward Elimination. JTIIK, vol. 7, no. 2.
Vijayarani, S., Dhayanand et al. (2015). Data mining classification algorithms for kidney disease prediction. International Journal on Cybernetics & Informatics (IJCI), vol. 4, no. 4, pp. 13–25.
Jena, L. and Kamila, N. K. (2015). Distributed data mining classification algorithms for prediction of chronic-kidney-disease. International Journal of Emerging Research in Management &Technology, vol. 4, no. 11, pp. 110–118.
Salekin A. and Stankovic J. (2016) Detection of chronic kidney disease and selecting important predictive attributes. 2016 IEEE International Conference on Healthcare Informatics (ICHI). IEEE, 2016, pp. 262–270.
Arifin T. dan Ariesta, D. (2019). Prediksi Penyakit Ginjal Kronis menggunakan Algoritma Naïve Bayes Classifier berbasis Particle Swarm Optimiation. Jurnal Tekno Insentif vol. 13, no. 1, pp. 26-30.
Kurniawan, M. (2020). Prediksi Penyakit Ginjal Kronis dengan Metode Pengurangan Fitur Symmetrical Uncertainty. Jnanaloka.
Maheswari, K., Priya, Ramkumar S., and Arun. (2019). Missing data handling by mean imputation method and statistical analysis of classification algorithm. International Conference on Big Data Innovation for Sustainable Cognitive Computing.
Raju, Lakshmi, Scholar, Kalidindi, and Padma. (2020). Study the Influence of Normalization/Transformation Process on the Supervised Classification. 3rd International Conference on Smart Systems and Inventive Technology.
Sehgal, S., Singh, H., Agarwal, M., Bhasker, V., and Shantanu. (2014). Data Analysis using Principal Compo nent Analysis. 2014 International Conference on Medical Imaging, m-Health and Emerging Communication Systems (MedCom).
Khalid, M.I., Alotaiby, T., Aldosari, S.A., Alshebeili, S.A., Al-Hameed, Almohammed, and Alotaibi. (2016). Epileptic MEG Spikes Detection using Common Spatial Patterns and Linear Discriminant Analysis. IEEE Access Vol 4.
Hosseini and Bardsiri, A.K. (2019). Improving Diagnosis Accuracy of Diabetic Disease using Radial Basis Function Network and Fuzzy Clustering. Hamara Journals.
Xu, J., Guo, B., and Liu, C. (2020). Evaluation of Glomerular Filtration Rate in Chronic Kidney Disease by Radial Basis Function Neural Network. Transplantation Proceedings.
Qasem, S.N and Mariyam, S.S. (2011). Radial basis function based on time variant multi bjective particle swarm optimization for medical diseases diagnosis. Applied Soft Computing vol. 11 no 1.
Christopher, D., Prabhakar, R., and Hinrich, S. (2008). Introduction to information retrievalâ€, An Introduction To Information Retrieval, pp.151-177.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Informatika Universitas Pamulang have CC-BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Informatika Universitas Pamulang recognize that free access is better than priced access, libre access is better than free access, and libre under CC-BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
Jurnal Informatika Universitas Pamulang is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
YOU ARE FREE TO:
- Share : copy and redistribute the material in any medium or format
- Adapt : remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms