Kombinasi Metode K-Nearest Neighbor dengan Cosine Similarity untuk Prediksi Serangan Firewall pada Jaringan Komputer
DOI:
https://doi.org/10.32493/informatika.v6i4.12680Keywords:
Computer network, Prediction, K-Nearest Neighbor, Firewall, Cosine SimilarityAbstract
The security of the computer network, especially the internet, is very crucial to note. One of the most effective ways to secure a computer network is to use a firewall. However, making a firewall that is still manual will make it difficult for network administrators to secure their computer network. The automatic detection of attacks on the firewall will further enhance the security of the computer network. Prediction or detection of attacks on the firewall automatically and intelligently can use the K-Nearest Neighbor algorithm by measuring the distance of data similarity using Cosine Similarity. The results of this study managed to achieve a high accuracy, which is 99.71%, precision is 74.70% and recall is 74.85% of predicting traffic that goes to the firewall. The results can be used as a standard of accuracy in predicting the traffic leading to the firewall, or even create an additional firewall so that the security of computer networks, especially the user data is saved.
References
Chen, Z., Zhou, L. J., Li, X. Da, Zhang, J. N., & Huo, W. J. (2020). The Lao text classification method based on KNN. Procedia Computer Science, Vol. 166, hal. 523–528. Elsevier B.V. https://doi.org/10.1016/j.procs.2020.02.053
Chicco, D., & Jurman, G. (2020). Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Medical Informatics and Decision Making, 20(1), 1–16. https://doi.org/10.1186/s12911-020-1023-5
Chiche, A., & Meshesha, M. (2021). Towards a Scalable and Adaptive Learning Approach for Network Intrusion Detection. Journal of Computer Networks and Communications, 2021. https://doi.org/10.1155/2021/8845540
Deolika, A., Kusrini, K., & Luthfi, E. T. (2019). Analisis Pembobotan Kata Pada Klasifikasi Text Mining. Jurnal Teknologi Informasi, 3(2), 179. https://doi.org/10.36294/jurti.v3i2.1077
Dewi, R. F. K., Obert, & Gusmana, R. (2018). Implementasi Metode K-Nearest Neighbor ( KNN ) dalam Pengelompokan Status Ekonomi Warga. Journal of Big Data Analytic and Artificial Intelligence, 4(1), 15–22.
Dhande, L. L., & Patnaik, P. G. K. (2014). Analyzing Sentiment of Movie Review Data using Naive Bayes Neural Classifier. International Journal of Emerging Trends & Technology in Computer Science (IJETTCS), 3(4), 313–320. Diambil dari www.ijettcs.org
Dinata, R. K., Akbar, H., & Hasdyna, N. (2020). Algoritma K-Nearest Neighbor dengan Euclidean Distance dan Manhattan Distance untuk Klasifikasi Transportasi Bus. ILKOM Jurnal Ilmiah, 12(2), 104–111. https://doi.org/10.33096/ilkom.v12i2.539.104-111
Ertam, F., & Kaya, M. (2018). Classification of firewall log files with multiclass support vector machine. 6th International Symposium on Digital Forensic and Security, ISDFS 2018 - Proceeding, 2018-Janua(2), 1–4. https://doi.org/10.1109/ISDFS.2018.8355382
Hassanat, A. B., Abbadi, M. A., Altarawneh, G. A., & Alhasanat, A. A. (2014). Solving the Problem of the K Parameter in the KNN Classifier Using an Ensemble Learning Approach. International Journal of Computer Science and Information Security, 12(8), 33–39. Diambil dari http://arxiv.org/abs/1409.0919
Khosroshahi, A. H., & Shahinzadeh, H. (2016). Security Technology by using Firewall for Smart Grid. Bulletin of Electrical Engineering and Informatics, 5(3), 366–372. https://doi.org/10.11591/eei.v5i3.545
Latifah, K. (2015). Kombinasi Algorithma K-NN dan Manhattan Distance untuk Menentukan Pemenang Lelang. Jurnal Informatika Upgris (JIU), 1, 49–58. Diambil dari https://docplayer.info/34038947-Kombinasi-algorithma-k-nn-dan-manhattan-distance-untuk-menentukan-pemenang-lelang.html
Mujtaba, G., Shuib, L., Idris, N., Hoo, W. L., Raj, R. G., Khowaja, K., … Nweke, H. F. (2019). Clinical text classification research trends: Systematic literature review and open issues. Expert Systems with Applications, 116, 494–520. https://doi.org/10.1016/j.eswa.2018.09.034
Nazari, N., & Mahdavi, M. (2018). A survey on Automatic Text Summarization. Journal of AI and Data Mining, 0(0), 121–135. https://doi.org/10.22044/jadm.2018.6139.1726
Nurdiana, O., Jumadi, J., & Nursantika, D. (2016). Perbandingan Metode Cosine Similarity Dengan Metode Jaccard Similarity Pada Aplikasi Pencarian Terjemah Al-Qur’an Dalam Bahasa Indonesia. Jurnal Online Informatika, 1(1), 59–63. https://doi.org/10.15575/join.v1i1.12
Rivki, Muhammad; Bachtiar, A. M. (2017). Implementasi Algoritma K-Nearest Neighbor Dalam Pengklasifikasian Follower Twitter Yang Menggunakan Bahasa Indonesia. Jurnal Sistem Informasi (Journal of Information System), 13(1), 31–37.
Saleh, A. I., Rabie, A. H., & Abo-Al-Ez, K. M. (2016). A data mining based load forecasting strategy for smart electrical grids. Advanced Engineering Informatics, 30(3), 422–448. https://doi.org/10.1016/j.aei.2016.05.005
Samuel, R., Natan, R., & Syafiqoh, U. (2018). Penerapan Cosine Similarity dan K-Nearest Neighbor ( K-NN ) pada Klasifikasi dan Pencarian Buku. Journal of Big Data Analytic and Artificial Intelligence, 1(1), 9–14.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing and Management, 45(4), 427–437. https://doi.org/10.1016/j.ipm.2009.03.002
Wahono, R. S., Herman, N. S., & Ahmad, S. (2014). A comparison framework of classification models for software defect prediction. Advanced Science Letters, 20(10–12), 1945–1950. https://doi.org/10.1166/asl.2014.5640
Wahyono, W., Trisna, I. N. P., Sariwening, S. L., Fajar, M., & Wijayanto, D. (2020). Comparison of distance measurement on k-nearest neighbour in textual data classification. Jurnal Teknologi dan Sistem Komputer, 8(1), 54–58. https://doi.org/10.14710/jtsiskom.8.1.2020.54-58
Wurdianarto, S., Wurdianarto, S. R., Novianto, S., & Rosyidah, U. (2014). Perbandingan Euclidean Distance Dengan Canberra Distance Pada Face Recognition. Techno.Com, 13(1), 31–37. Diambil dari https://publikasi.dinus.ac.id/index.php/technoc/article/view/539
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Informatika Universitas Pamulang have CC-BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Informatika Universitas Pamulang recognize that free access is better than priced access, libre access is better than free access, and libre under CC-BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
Jurnal Informatika Universitas Pamulang is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
YOU ARE FREE TO:
- Share : copy and redistribute the material in any medium or format
- Adapt : remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms