Pengolahan Citra Digital untuk Identifikasi Kanker Otak Menggunakan Metode Deep Belief Network (DBN)
DOI:
https://doi.org/10.32493/informatika.v6i4.13089Keywords:
Brain cancer, MRI identification, Digital Image Processing, DBNAbstract
The brain tumor is a dangerous disease for humans that can interfere with the functioning of the human brain. Brain tumors can develop into malignant brain tumors or brain cancer and cause death, so early detection is necessary to diagnose brain tumor disease. One way of early detection is to use the anatomy of an MRI scan of health images. The MRI scan results can diagnose patients, but it takes longer time. Therefore digital image processing is needed to facilitate an analysis so that it can be seen in the brain image there are tumor cells or not. In addition to digital image processing, a system that analyzes and detects data is also needed. The Deep Belief Network (DBN) method is used to identify data. This study conducted trials on the learning rate and network architecture. The results of the identification of brain cancer using the DBN method obtained a sensitivity (TP rate) value of 90.9%, a specificity (TN rate) of 100%, an accuracy of 95%, and a precision of 100% with a learning rate of 0.1 and using a 4-12-10-1 network architecture.
References
Abdalla, H. E. M., & Esmail, M. Y. (2018). Brain tumor detection by using artificial neural network. In 2018 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE) (pp. 1–6). IEEE.
Al Rivan, M. E., Rachmat, N., & Ayustin, M. R. (2020). Klasifikasi Jenis Kacang-Kacangan Berdasarkan Tekstur Menggunakan Jaringan Syaraf Tiruan. Jurnal Komputer Terapan, 6(1), 89–98.
Alam, M. S., Rahman, M. M., Hossain, M. A., Islam, M. K., Ahmed, K. M., Ahmed, K. T., … Miah, M. S. (2019). Automatic human brain tumor detection in MRI image using template-based K means and improved fuzzy C means clustering algorithm. Big Data and Cognitive Computing, 3(2), 27.
Ashshidiqi, H. N., Suprayogi, S., & Bethaningtyas, H. (2017). Identifikasi Pada Seragam Personel Militer Menggunakan Image Processing. EProceedings of Engineering, 4(1).
Asyhar, A. H., Foeady, A. Z., Thohir, M., Arifin, A. Z., Haq, D. Z., & Novitasari, D. C. R. (2020). Implementation LSTM Algorithm for Cervical Cancer using Colposcopy Data. In 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) (pp. 485–489). IEEE.
Bahadure, N. B., Ray, A. K., & Thethi, H. P. (2017). Image analysis for MRI based brain tumor detection and feature extraction using biologically inspired BWT and SVM. International Journal of Biomedical Imaging, 2017.
Damayanti, A., & Werdiningsih, I. (2018). Classification of tumor based on magnetic resonance (MR) brain images using wavelet energy feature and neuro-fuzzy model. In Journal of Physics: Conference Series (Vol. 974, p. 12027). IOP Publishing.
GarcÃa, E., Diez, Y., Diaz, O., Lladó, X., Gubern-Mérida, A., MartÃ, R., … Oliver, A. (2019). Breast MRI and X-ray mammography registration using gradient values. Medical Image Analysis, 54, 76–87.
Ibrokhimov, B., Hur, C., Kim, H., & Kang, S. (2020). An optimized deep belief network model for accurate breast Cancer classification. IEIE Transactions on Smart Processing & Computing, 9(4), 266–273.
Khatami, A., Khosravi, A., Nguyen, T., Lim, C. P., & Nahavandi, S. (2017). Medical image analysis using wavelet transform and deep belief networks. Expert Systems with Applications, 86, 190–198.
Novitasari, D. C. R., Foeady, A. Z., Thohir, M., Arifin, A. Z., Niam, K., & Asyhar, A. H. (2020). Automatic Approach for Cervical Cancer Detection Based on Deep Belief Network (DBN) Using Colposcopy Data. In 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) (pp. 415–420). IEEE.
Pambudi, A. R. (2020). Deteksi Keaslian Uang Kertas Berdasarkan Watermark Dengan Pengolahan Citra Digital. Jurnal Informatika Polinema, 6(4), 69–74.
Pannakkong, W., Sriboonchitta, S., & Huynh, V.-N. (2018). An ensemble model of arima and ann with restricted boltzmann machine based on decomposition of discrete wavelet transform for time series forecasting. Journal of Systems Science and Systems Engineering, 27(5), 690–708.
Rozi, M. F., Novitasari, D. C. R., & Intan, P. K. (2020). Brain Disease Classification using Different Wavelet Analysis for Support Vector Machine (SVM).
Sari, J. I., & Sihotang, H. T. (2017). Implementasi Penyembunyian Pesan Pada Citra Digital Dengan Menggabungkan Algoritma HILL Cipher Dan Metode Least Significant BIT (LSB). Jurnal Mantik Penusa, 1(2).
Septiarini, A., Hamdani, H., Hatta, H. R., & Anwar, K. (2020). Automatic image segmentation of oil palm fruits by applying the contour-based approach. Scientia Horticulturae, 261, 108939.
Shree, N. V., & Kumar, T. N. R. (2018). Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network. Brain Informatics, 5(1), 23–30.
Sofian, J., & Laluma, R. H. (2019). Klasifikasi Hasil Citra Mri Otak Untuk Memprediksi Jenis Tumor Otak Dengan Metode Image Threshold Dan GLCM Menggunakan Algoritma K-NN (Nearest Neighbor) Classifier Berbasis Web. Infotronik: Jurnal Teknologi Informasi Dan Elektronika, 4(2), 51–56.
Sumijan, I., Purnama, P. A. W., & Kom, M. (2021). Teori dan Aplikasi Pengolahan Citra Digital Penerapan dalam Bidang Citra Medis. Insan Cendekia Mandiri.
Suta, I., Hartati, R. S., & Divayana, Y. (2019). Diagnosa Tumor Otak Berdasarkan Citra MRI (Magnetic Resonance Imaging). Maj. Ilm. Teknol. Elektro, 18(2).
Syam, A. A., Rifka, S., & Aulia, S. (2021). Implementasi Pengolahan Citra Untuk Identifikasi Daun Tanaman Obat Menggunakan Levenberg-Marquardt Backpropagation. Elektron: Jurnal Ilmiah, 1–8.
Wadhwa, A., Bhardwaj, A., & Verma, V. S. (2019). A review on brain tumor segmentation of MRI images. Magnetic Resonance Imaging, 61, 247–259.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Informatika Universitas Pamulang have CC-BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Informatika Universitas Pamulang recognize that free access is better than priced access, libre access is better than free access, and libre under CC-BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
Jurnal Informatika Universitas Pamulang is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
YOU ARE FREE TO:
- Share : copy and redistribute the material in any medium or format
- Adapt : remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms