Analisis Sentimen terhadap Layanan Indihome di Twitter dengan Metode Machine Learning

Authors

  • Rani Puspita Bina Nusantara University
  • Agus Widodo Bina Nusantara University

DOI:

https://doi.org/10.32493/informatika.v6i4.13247

Keywords:

Sentiment Analysis, Indihome, Twitter, Random Forest, Gradient Boosted Trees

Abstract

Indihome is a digital service such as the internet that can be used at home, landlines and interactive TV. However, because it is so extensive, Indihome has received a lot of criticism because the internet connection is rarely stable. Therefore, a sentiment analysis in the field of was carried out data mining on customers Indihomeon Twitter social media which consisted of 1350 data and filtered into 1309 data because a lot of data indicated duplicates. In this study, researchers used the methods Random Forest and Gradient Boosted Trees (GBT). This research was conducted using tools Rapidminer version 9.8. Research shows that sentiment analysis on Indihome services using the method Random Forest achieves an accuracy of 99.54% with class precision for pred. negative is 99.92%, pred positive is 25.00%, and pred. neutral is 60.00%. Then the GBT method has an accuracy rate of 99.31% with a precision class ofn for pred. negative is 99.46%, pred. positive is 0.00%, and pred. neutral is 0.00%. So it can be concluded that the Random Forest method is a better method when compared to GBT.

Author Biographies

Rani Puspita, Bina Nusantara University

Computer Science Department, BINUS Graduate Program – Master of Computer Science

Agus Widodo, Bina Nusantara University

Computer Science Department, BINUS Graduate Program

References

Bisri, A., & Rachmatika, R. (2019). Integrasi Gradient Boosted Trees dengan SMOTE dan Bagging untuk Deteksi Kelulusan Mahasiswa. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi (JNTETI), 8(4), 309. https://doi.org/10.22146/jnteti.v8i4.529

Christy, E., & Suryowati, K. (2021). Analisis Klasifikasi Status Bekerja Penduduk Daerah. 6(1), 69–76. Retrieved from https://ejournal.akprind.ac.id/index.php/STATISTIKA/article/view/3519/2577

Fitriasti, N. A., & Priansa, D. J. (2021). STRATEGI DIRECT MARKETING DALAM RANGKA MERANGSANG MINAT PENGGUNAAN PRODUK INDIHOME. 7(4), 665–671. Retrieved from https://openlibrarypublications.telkomuniversity.ac.id/index.php/appliedscience/article/view/15264

Hidayat, E. Y., Hardiansyah, R. W., & Affandy. (2021). Analisis Sentimen Twitter untuk Menilai Opini Terhadap Perusahaan Publik Menggunakan Algoritma Deep Neural Network. 02, 108–118. Retrieved from https://teknosi.fti.unand.ac.id/index.php/teknosi/article/view/1887/pdf

Maulana, F. A., Ernawati, I., Labu, P., & Selatan, J. (2020). Analisa sentimen cyberbullying di jejaring sosial twitter dengan algoritma naïve bayes. Seminar Nasional Mahasiswa Ilmu Komputer Dan Aplikasinya (SENAMIKA, 529–538. Retrieved from https://conference.upnvj.ac.id/index.php/senamika/article/view/619

Putra, A. I., & Santika, R. R. (2020). Implementasi Machine Learning dalam Penentuan Rekomendasi Musik dengan Metode Content-Based Filtering. Edumatic : Jurnal Pendidikan Informatika, 4(1), 121–130. https://doi.org/10.29408/edumatic.v4i1.2162

Rasenda, R., Lubis, H., & Ridwan, R. (2020). Implementasi K-NN Dalam Analisa Sentimen Riba Pada Bunga Bank Berdasarkan Data Twitter. Jurnal Media Informatika Budidarma, 4(2), 369. https://doi.org/10.30865/mib.v4i2.2051

Suarjana, I. K., & Suprapti, N. W. S. (2018). Pengaruh Persepsi Harga, Pengetahuan Produk, Dan Citra Perusahaan Terhadap Niat Beli Layanan Multi Servis Merek Indihome. E-Jurnal Manajemen Universitas Udayana, 7(4), 251833. https://doi.org/10.24843/EJMUNUD.2018.v07.i04.p08

Syahputra, R. D., & Sampurno, W. (2019). Analisis Kualitas Pelayanan Nilai Pelanggan Berbasis Digital pada Media Sosial Facebook terhadap Kepuasan Pelanggan (Studi Pada Produk Indihome Di Plaza Telkom Lembong Kota Bandung Tahun 2019). EProceedings of Applied Science, 5(3), 1841. Retrieved from https://openlibrarypublications.telkomuniversity.ac.id/index.php/appliedscience/article/view/11042/10910

Syukron, A., & Subekti, A. (2018). Penerapan Metode Random Over-Under Sampling dan Random Forest Untuk Klasifikasi Penilaian Kredit. Jurnal Informatika, 5(2), 175–185. https://doi.org/10.31311/ji.v5i2.4158

Downloads

Published

2022-02-15