Rancang Bangun Aplikasi Data Mining untuk Market Basket Analysis dengan Algoritma Apriori

Authors

  • Yono Cahyono Universitas Pamulang

DOI:

https://doi.org/10.32493/informatika.v7i2.13400

Keywords:

data mining; market basket analysis; apriori algorithm

Abstract

Transaction data regarding product sales every day will continue to increase and are usually only used as archives, not properly utilized the sales transaction data. The very large number of sales transactions makes it impossible for humans to read and analyze manually. Data regarding sales transactions, if dig deeper into the transaction data, will definitely get important information, such as buying patterns made by consumers. With these problems, therefore we need a system to manage product sales transaction data, based on the tendency of products that appear simultaneously in a transaction using an a priori algorithm. Market Basket Analysis is the process of analyzing transaction data to obtain product purchasing patterns with other products that are usually frequently purchased by consumers, as well as to obtain correlations and associations between these product items. The a priori algorithm is used to obtain an association rule for data mining, where the rules for a combination of an item are calculated for their support and confidence values. With the a priori algorithm that is used, it can find product recommendations from the calculation of the frequent value of a product with other products based on consumer purchase transactions. The results of this study are able to analyze the pattern of product purchases made by consumers and can provide convenience in making decisions for future marketing strategies.

References

Aisyah, S., & Normah, N. (2019). “Penerapan Algoritma Apriori Terhadap Data Penjualan Di Swalayan Koperasi Bappenas Jakara Pusat. Paradigma”. Jurnal Komputer dan Informatika, 21(2), 235-242. doi:10.31294/p.v21i2.6205.

Latifah VN, Furqon MT, Santoso N. (2018). “Implementasi Algoritme Modified-Apriori Untuk Menentukan Pola Penjualan Sebagai Strategi Penempatan Barang Dan Promo”. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer. Vol. 2, No. 10, hlm. 3829-3834.

Nofriansyah, D. (2014). “Konsep Data Mining Vs Sistem Pendukung Keputusan”. Yogyakarta, Deepublish.

Prahartiwi LI. (2017). "Pencarian Frequent Itemset pada Analisis Keranjang Belanja Menggunakan Algoritma FP-Growth". Information System For Educators And Professionals. Vol.2, No.1, E-ISSN: 2548-3587.

Pressman, R, (2015), "Rekayasa Perangkat Lunak: Pendekatan Praktisi Buku I", Yogyakarta, Andi.

Shelly, Gary B, dan Rosenblatt, Harry J. (2012), "System Analysis and Desain", Boston Course Technology.

Syahdan, S. Al, & Anita, S. (2018). "Data Mining Penjualan Produk Dengan Metode Apriori Pada Indomaret Galang Kota". Nasional Komputasi Dan Teknologi Informasi, 1, 56–63.

Uma Maheswari, K. (2018). "Finding Frequent Item Set using Apriori Algorithm for Online Shopping (Ekart)". International Journal of Enginering Since and Computing.

Vyas, K., & Sherasiya, S. (2016). “Modified Apriori Algorithm Using Hash Based Technique”. IJARIIE, 2(3), 1229-1234.

Wijaya Krisna N, (2017). “Analisa Pola Frekuensi Keranjang Belanja dengan Algoritma Apriori (Studi kasus: Minimarket Adi)”, Prosiding Annual Research Seminar 2017, Universitas Sriwijaya.

Downloads

Published

2022-06-30