Analisis Eksploratif Berita Hoax pada Situs Cek Kebenaran




exploratory analysis, hoax, truth check, dashboard, fake news


The spread of fake news (hoax) through social media is currently quite difficult for the public to distinguish hoax or actual news. News can be categorized as actual if it comes from a trusted source and is supported by valid source clarification. Therefore, the news that has been spread needs to be clarified to check the truth. Currently, news checking sites are available, including and They have a detail of clarification data on the news classified as hoax or actual. Based on the number of online spreading hoaxes, this study seeks to create a Directory Fact Checker platform, which is a news analysis platform that can display distribution data in graphic form within a certain period of time. Exploratory data analysis was applied to hoax data in 2020. The results of the analysis show that Facebook is the first ranked social media that is often used to spread hoax news, followed by Whatsapp in second place. Meanwhile, judging from the categorization of hoaxes, Content Fabrication is the most widely spread category. Content Fabrication is a news category, 100% of the discussion is fake news. Then in the second rank, followed by the Misleading Content category, Misleading Content is a discussion of news whose contents are twisted with the aim of discrediting.

Author Biographies

Puji Winar Cahyo, Universitas Jenderal Achmad Yani Yogyakarta

Informatics Department

Ulfi Saidata Aesyi, Universitas Jenderal Achmad Yani Yogyakarta

Information System Departement


Aesyi, U. S., Lahitani, A. R., Diwangkara, T. W., & Kurniawan, R. T. (2021). Deteksi Dini Mahasiswa Drop Out Menggunakan C5.0. JISKA (Jurnal Informatika Sunan Kalijaga), 6(2), 113–119.

Arigia, M. B. (2016). Infografis Sebagai Media Dalam Meningkatkan Pemahaman Dan Keterlibatan Publik Bank Indonesia. Jurnal Komunikasi, 8(2), 120–133.

Budiman, A. (2017). Berita Bohong (Hoax) Di Media Sosial Dan Pembentukan Opini Publik. Pusat Penelitian Badan Keahlian DPR RI, IX(01), 2009–2012.

Cahyo, P. W., Habibi, M., Priadana, A., & Saputra, A. B. (2021). Analysis of Popular Hashtags on Instagram Account The Ministry of Health, 34(Ahms 2020), 270–273.

Cahyo, P. W., Kusumaningtyas, K., & Aesyi, U. S. (2021). A User Recommendation Model for Answering Questions on Brainly Platform. Jurnal Infotel, 13(1), 7–12.

Cahyo, P. W., & Wicaksono, A. I. (2019). DJANGO FRAMEWORK AND PYTHON-GAMMU AS MIDDLEWARE SMS BROADCAST. Compiler, 8(1), 27–34. Retrieved from

Giachanou, A., Ríssola, E. A., Ghanem, B., Crestani, F., & Rosso, P. (2020). The Role of Personality and Linguistic Patterns in Discriminating Between Fake News Spreaders and Fact Checkers. In E. Métais, F. Meziane, H. Horacek, & P. Cimiano (Eds.), Natural Language Processing and Information Systems (pp. 181–192). Cham: Springer International Publishing.

Habibi, M., & Cahyo, P. W. (2019). Clustering User Characteristics Based on the influence of Hashtags on the Instagram Platform. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 13(4), 399–408.

Nadee, W., & Prutsachainimmit, K. (2018). Towards data extraction of dynamic content from JavaScript Web applications. In 2018 International Conference on Information Networking (ICOIN) (pp. 750–754).

Pakpahan, R. (2017). Analisis Fenomena Hoax Diberbagai Media. Konferensi Nasional Ilmu Sosial & Teknologi (KNiST), 1(2013), 479–484. Retrieved from

Qurnia, D. Y., & Cahyo, P. W. (2020). Internet of Things pada Dashboard Informasi Kandang Jangkrik. IJAI (Indonesian Journal of Applied Informatics), 5(1), 60–66.

Sankpal, K. A. (2020). A Review on Data Normalization Techniques. International Journal of Engineering Research & Technology (IJERT), 9(06), 1438–1441.

Septanto, H. (2018). Pengaruh Hoax dan Ujaran Kebencian Sebuah Cyber Crime dengan Teknologi Sederhana di Kehidupan Sosial Masyarakat. Jurnal Sains Dan Teknologi, 5(2), 157–162.