Perbandingan Algoritma K-Nearest Neighbor dan Decision Tree untuk Penentuan Risiko Kredit Kepemilikan Mobil
DOI:
https://doi.org/10.32493/informatika.v2i2.1512Keywords:
Analisa Kredit, Algoritma K-NN, Metode Desicion Tree, Rapid Miner, Data MiningAbstract
Perbandingan Algoritma K-Nearest Neighbor Dan Decision Tree untuk Risiko Kredit Kepemilikan Mobil Kredit adalah sarana agar orang atau perusahaan dapat meminjam modal atau uang dan membayarnya dalam tempo yang sudah ditentukan. Agar kredit yang diberikan sesuai tujuan atau sasaran; yaitu aman; maka perlu diakukan analisis kredit. Analisis kredit adalah kajian yang dilakukan untuk mengetahui kelayakan dari suatu permasalahan kredit. Dalam penelitian analisa kredit ini menggunakan perbandingan Algoitma K-nearest neighbor (K-NN) yang merupakan penelitian menggunakan metode dengan mencari kedekatan antara kriteria kasus baru dengan kriteria kasus lama berdasarkan kriteria kasus yang paling mendekati; dan menggunakan Metode Decision tree yang merupakan metode yang ada pada teknik klasifikasidalam data mining. Hasil penelitian dengan menggunakan aplikasi Rapid Miner menunjukan bahwa Algoritma K-Nearest Neighbor (K-NN) memiliki nilai akurasi yang lebih baikDownloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Informatika Universitas Pamulang have CC-BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Informatika Universitas Pamulang recognize that free access is better than priced access, libre access is better than free access, and libre under CC-BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
Jurnal Informatika Universitas Pamulang is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
YOU ARE FREE TO:
- Share : copy and redistribute the material in any medium or format
- Adapt : remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms