Rice Price Prediction System Based on Rice Quality and Milling Level using Multilayer Perceptron
DOI:
https://doi.org/10.32493/informatika.v7i1.15326Keywords:
rice price prediction, backpropagation, architectureAbstract
Bacpropagation algorithm is a neural network algorithm that has good performance. In addition to Backpropagation, SVM also includes a neural network algorithm. SVM also has a good performance in making predictions. This is based on previous research related to rice price predictions. During the COVID-19 pandemic, the government is obliged to maintain the stability of the price of basic necessities or basic commodities, the reason is to maintain the availability of basic commodities. Based on the conditions in the field, this research will create a rice price prediction system based on the type of rice quality at the milling level. The purpose of this research is to help stabilize rice prices in the market. The method used to predict is Backpropagation by proposing 2 architectures, namely 3-25-1, and 3-35-1. The dataset used is taken from bps.go.id, the total dataset is 318, and the method of evaluating the prediction results is using the MAE value. Based on the trial the lowest MAE value is 305.93 in the first architecture 3-25-1.References
Budi, A. S., Susilo, P. H., & Nafi’iyah, N. (2020). SVM Algorithm for Predicting Rice Yields. Jurnal Teknologi Informasi Dan Pendidikan, 13(341).
Fardhani, A. A., Simanjuntak, D. I. N., & Wanto, A. (2018). Prediksi Harga Eceran Beras Di Pasar Tradisional Di 33 Kota Di Indonesia Menggunakan Algoritma Backpropagation. Jurnal Infomedia, 3(1).
Fraticasari, S. Y., Ratnawati, D. E., & Wihandika, R. C. (2018). Optimasi Pemodelan Regresi Linier Berganda Pada Prediksi Jumlah Kecelakaan Sepeda Motor Dengan Algoritme Genetika. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (JPTIIK) Universitas Brawijaya.
Herwanto, H. W., Widiyaningtyas, T., & Indriana, P. (2019). Penerapan Algoritme Linear Regression untuk Prediksi Hasil Panen Tanaman Padi. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi (JNTETI). https://doi.org/10.22146/jnteti.v8i4.537
Ischak, R., Asrof, A., & Darmawan, G. (2018). Peramalan Rata-Rata Harga Beras Di Tingkat Penggilingan Menggunakan Model Singular Spectrum Analysis (SSA). Seminar Nasional Matematika Dan Pendidikan Matematika.
Nafi’iyah, N., Ahmad Salaffudin1, A., & Nawafilah, N. Q. (2020). Algoritma Backpropagation untuk Memprediksi Korban Bencana Alam. SMATIKA JURNAL. https://doi.org/10.32664/smatika.v9i02.400
Ramadania, R. (2018). Peramalan Harga Beras Bulanan di Tingkat Penggilingan dengan Metode Weighted Moving Average. Bimaster, 7(4).
Sen, S., Sugiarto, D., & Rochman, A. (2020). Komparasi Metode Multilayer Perceptron (MLP) dan Long Short Term Memory (LSTM) dalam Peramalan Harga Beras. ULTIMATICS, XII(1).
Suryanto, A. A. (2019). Penerapan Metode Mean Absolute Error (Mea) dalam Algoritma Regresi Linear untuk Prediksi Produksi Padi. SAINTEKBU. https://doi.org/10.32764/saintekbu.v11i1.298
Taqwa, N. L., Nuryana, I. K. D., & Andriani, A. (2019). Sistem Prediksi Produksi Padi di Provinsi Jawa Timur Menggunakan Exponential Smoothing Berbasis Web. Inovate.
Wuwung, V., Nainggolan, N., & Paendong, M. (2013). Prediksi Harga Beras Sultan dan Membramo di Kota Manado dengan Menggunakan Model ARIMA. Jurnal MIPA. https://doi.org/10.35799/jm.2.1.2013.739
Yuwantoro, M., Mahmud, I., & Murdiansyah Danang Triantoro, T. U. (2019). Prediksi Harga Beras Premium dengan Metode Algoritma K-Nearest Neighbor. E-Proceeding of Engineering, 7(1), 2714–2724.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Informatika Universitas Pamulang have CC-BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Informatika Universitas Pamulang recognize that free access is better than priced access, libre access is better than free access, and libre under CC-BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
Jurnal Informatika Universitas Pamulang is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
YOU ARE FREE TO:
- Share : copy and redistribute the material in any medium or format
- Adapt : remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms