Perbandingan Algoritma Klasifikasi Support Vector Machine dan Random Forest pada Prediksi Status Indeks Mitigasi dan Kesiapsiagaan Bencana (IMKB) Satuan Kerja BPS di Indonesia Tahun 2020

Authors

  • Ayu Aina Nurkhaliza Politeknik Statistika STIS
  • Arie Wahyu Wijayanto Politeknik Statistika STIS

DOI:

https://doi.org/10.32493/informatika.v7i1.16117

Keywords:

Classification, Support Vector Machine, Random Forest, Disaster Mitigation, Disaster Preparedness.

Abstract

Natural and non-natural disasters are closely related to material and non-material losses. Government agencies are one of the important elements in disaster mitigation and preparedness efforts in order to reduce the number of victims and losses that will be caused. Disaster preparedness in the work unit is influenced by several factors, including regional characteristics, experience in disasters, education level, and employee conditions. This study aims to obtain a classification method that is able to predict the status of the Disaster Mitigation and Preparedness Index of work units based on several factors that affect disaster preparedness. Data processing uses the R Studio application with the Support Vector Machine (SVM) and Random Forest classification methods. Several studies have shown that the accuracy of the SVM and Random Forest classification methods tends to be better when compared to other classification methods. In addition, SVM is able to classify non-linear data and with Random Forest there will be no overfit as the number of trees increases. The results showed that the Random Forest classification method had higher accuracy, precision, and recall values than SVM with an accuracy value of 78.22%, precision of 75.54%, and recall of 76%.

References

Amalia, H. (2018). Perbandingan Metode Data Mining Svm Dan Nn Untuk Klasifikasi Penyakit Ginjal Kronis. Jurnal PILAR Nusa Mandiri, 14(1), 1–6.

Benson, C., & Twigg, J. (2007). Tools for Mainstreaming Disaster Risk Reduction: Guidance Notes for Development Organisations. In 2007.

Breiman, L. E. O. (2001). Random Forests. 5–32.

Han, J., & Kamber, M. (2006). Data Mining Concept and Technique. Elsevier.

Herdwiyanti, F., & Sudaryono. (2012). Perbedaan Kesiapsiagaan Menghadapi Bencana Ditinjau dari Tingkat Self-Efficacy pada Anak Usia Sekolah Dasar di Daerah Dampak Bencana Gunung Kelud. Jurnal Psikologi Kepribadian dan Sosial, 1(03).

Hidayat, D. (2008). Kesiapsiagaan Masyarakat: Paradigma Baru Pengelolaan Bencana Alam. Jurnal Kependudukan Indonesia, 3(1), 69–84. http://ejurnal.kependudukan.lipi.go.id/index.php/jki/article/view/164

Ismanto, E., & Novalia, M. (2021). Komparasi Kinerja Algoritma C4 . 5 , Random Forest , dan Gradient Boosting untuk Klasifikasi Komoditas. Techno.COM, 20(3), 400–410.

Octaviani, P. A., Wilandari, Y., & Ispriyanti, D. (2014). Penerapan Metode Klasifikasi Support Vector Machine (Svm) Pada Data Akreditasi Sekolah Dasar. JURNAL GAUSSIAN, 3, 811–820.

Pamuji, F. Y., & Ramadhan, V. P. (2021). Komparasi Algoritma Random Forest Dan Decision Tree Untuk Memprediksi Keberhasilan Immunotheraphy. Jurnal Teknologi dan Manajemen Informatika, 7(1), 46–50.

Rachman, F., & Purnami, S. W. (2012). Perbandingan Klasifikasi Tingkat Keganasan Breast Cancer Dengan Menggunakan Regresi Logistik Ordinal Dan Support Vector Machine ( SVM ). Jurnal Sains dan Seni ITS, 1(1).

Rustam, R. (2018). Kerjasama Pemerintah Dan Masyarakat Dalam Penanggulangan Bencana Di Kabupaten Luwu Utara. Skripsi.

Swiss Re. (1998). Floods - an insurable risk? : a market survey. In Swiss Reinsurance Company.

Wijaya, S. A., Wulandari, Y., & Lestari, R. I. (2019). Faktor-Faktor Yang Mempengaruhi Kesiapsiagaan Bencana Gempa Bumi Padalansia di Posyandu Pun- todewo Tanjungsari Surabaya. Jurnal Keperawatan Muhammadiyah, 4(1).

Zhao, Y. (2015). R and Data Mining : Examples and Case Studies. December 2012.

Downloads

Published

2022-05-31