Analisis Kebakaran pada Hutan dan Lokasi Lahan di Provinsi Riau Menggunakan Metode C4.5

Authors

  • Nalda Kresimo Negoro Magister Teknik Informatika - Universitas Amikom Yogyakarta
  • Mardiana Mardiana Magister Teknik Informatika - Universitas Amikom Yogyakarta
  • M. Izul Ula Magister Teknik Informatika - Universitas Amikom Yogyakarta
  • Fajar Dwi Insani Magister Teknik Informatika - Universitas Amikom Yogyakarta

DOI:

https://doi.org/10.32493/informatika.v7i1.17176

Keywords:

Data mining, C4.5, Decision Tree, Forest Fire

Abstract

Data mining is a step of the process that is useful and necessary to analyze the data that has been obtained from a particular situation with mathematical calculations. A decision tree (decision tree) is an algorithm that is widely used in data mining classification. One of the algorithms that can help produce decision tree outputs is the C4.5 algorithm. Data mining consists of preprocessing, evaluating patterns, and presenting knowledge from an application. The dataset used in forest fires is taken from the BMKG website and classified according to its attributes so that the data can be processed to produce output for decision-making. The classification process used to process datasets with specific methods can predict events such as weather forecasts and traffic jams to predict natural disasters. Forest fires are very detrimental disasters because they can pollute the environment, interfere with health such as breathing and vision, and weaken the economy of a region. This study aims to apply the C4.5 algorithm, which can analyze and predict forest fires in the Riau province. The implementation of the C.45 algorithm method with an average value attribute has an accuracy value of 92.54% and a decision tree, which is an accuracy value of 99.2% with an equation test and test results with a confusion matrix.

Author Biography

Nalda Kresimo Negoro, Magister Teknik Informatika - Universitas Amikom Yogyakarta

Master of Informatics Engineering, Universitas Amikom Yogyakarta

References

Endrawati, Purwanto, J., Nugroho, S., & S., R. A. (2018). Identifikasi Areal Bekas Kebakaran Hutan Dan Lahan Menggunakan Analisis Semi Otomatis Citra Satelit Landsat.

Fathimah, A. I., Arianti, N. D., Mupaat, & Junfithrana, A. P. (2021). Penerapan Data Mining Dengan Metode Apriori Pada Penjualan Sembako, 8(1), 20-26.

LPPM IPB. (2020, 12 18). P4W - LPPM. Retrieved 12 30, 2021, from https://p4w.ipb.ac.id/en/kajian-akademis-dan-penyusunan-penaksiran-kerugian-pasca-kejadian-kebakaran-hutan-dan-lahan-karhutla-tahun-2020-di-kabupaten-kotawaringin-timur/

Muhamad, Windarto, A. P., & Suhada. (2019). Penerapan Algoritma C4.5 Pada Klasifikasi Potensi Siswa Drop Out, 3(1), 753-760.

Nugroho, T. B., & Sugiharti, E. (2021). The Improvement of C4.5 Algorithm Accuracy in Predicting Forest Fires Using Discretization and AdaBoost, 43-52.

Sineva, I., & Molovtsev, M. D. (2020). An Integrated Approach to the Regression Problem in Forest Fires Detection.

Sugiharti, E., Firmansyah, S., & Devi, F. R. (2017). Predictive Evaluation of Performance of Computer Science Students of UNNES using Data Mining Based on Naïve Bayes Classifier (NBC) Algorithm, 95(4).

Verbeke, W., Dejaeger, K., Martens, D., Hur, J., & Baesens, B. (2012). New Insights into Churn Prediction in the Telecommunication Sector: A Profit Driven Data Mining Approach. European Journal of Operational Research, 218(1), 211-229. doi:10.1016/j.ejor.2011.09.031

Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining: Practical Machine Learning Tools and Techniques (3rd ed.). Burlington: Morgan Kaufmann.

Yap, B. W., Rani, K. A., Rahman, H. A., Fong, S., Khairudin, Z., & Abdullah, N. N. (2014). An Application of Oversampling, Undersampling, Bagging and Boosting in Handling Imbalanced Datasets. Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013). 285, pp. 13-22. Singapore: Springer. doi:10.1007/978-981-4585-18-7_2

Downloads

Published

2022-05-31