Pemodelan Prakiraan Tingkat Inflasi Di Indonesia Dengan ARIMA
DOI:
https://doi.org/10.32493/informatika.v7i2.17676Keywords:
Arima, Prediksi, Runtun Waktu, Inflasi, Ekonomi IndonesiaAbstract
Penelitin bertujuan untuk mengetahui nilai inflasi bulanan yang terjadi di Indonesia. Penelitian menggunakan data sekunder yang sumber dari BPS dan Bank Indonesia. Sampel penelitian diambil mulai periode Januari 2010 sampai April 2021. Metode analisis data dengan model ARIMA. Dalam proses analisis data dibagi menjadi dua bagian yaitu data training (Januari 2010 – Desember 2020) sebagai data bangkitan untuk membangun model dan data testing (Januari – April 2021) untuk menguji hasil prediksi dari model. Dari analisis data diperoleh hasil pemodelan ARIMA (3,1,2). Uji validasi model dengan parameter RMSE (Root Mean Square Error) sebesar 1.076, nilai MAE (Mean Absolute Error) sebesar 0.696, dan MAPE (Mean Absolute Percentage Error) sebesar 220.68. Uji validasi hasil prediksi dengan uji rata-rata dan varian menunjukkan bahwa hasil pengujian dari kedua metode tersebut mempunyai nilai probabilitas yang lebih besar dari 0,05 sehingga dapat disimpulkan tidak terdapat perbedaan yang signifikan nilai aktual dengan nilai prediksinya. Mengingat model ini mempunyai keterbatasan, maka disarankan untuk meningkatkan akurasi model prediksi dapat dilakukan dengan pendekatan metode lain, misalnya naive bayes atau metode jaringan saraf tiruan (artificial neural network).
References
Fattah, J., Ezzine, L., Aman, Z., Moussami, H. El, & Lachhab, A. (2018). Forecasting of demand using ARIMA model. 10, 1–9. https://doi.org/10.1177/1847979018808673
Hartini Dwi dan Yuni Prihadi. (2014). Analisis Pengaruh Inflasi terhadap Pertumbuhan Ekonomi di Indonesia dengan Metode Final Prediction Error.
Iqbal, M., & Naveed, A. (2016). Forecasting Inflation : Autoregressive Integrated Moving Average Model. 12(1), 83–92. https://doi.org/10.19044/esj.2016.v12n1p83
Nova, M., & Panjaitan, Y. (2014). Faktor-faktor yang mempengaruhi inflasi di indonesia. 21(3), 182–193.
Pardede, P. (2019). Penerapan Model Arima Dalam Memprediksi Indeks Harga Saham Gabungan Bursa Efek Indonesia- Jakarta. 1(April).
Pitaloka, Riski Arum, S. dan R. R. (2019). Perbandingan Metode ARIMA Box-Jenkins Dengan ARIMA Ensemble pada Peramalan Nilai Import Provinsi jawa Tengah. 8, 194–207.
Rofiq, M. A., Huda, W. S., Pasuruan, U. Y., Nusantara, U. B., & Baku, P. B. (2019). Forecasting Persediaan Bahan Baku Kertas Menggunakan Metode Autoregressive Integrated Moving Average ( Arima ) Di Yudharta. 1(2). https://doi.org/10.12928/JASIEK.v13i2.xxxx
Susanti, R., & Adji, A. R. (2020). ANALISIS Peramalan Ihsg Dengan Time Series Modeling Arima ( Analysis Of Indonesia Composite Index ( Ihsg ) Forecasting With Arima Time Series Modeling ). 17(01), 97–106.
Wahyu, W. W. (2015). Analisis Ekonometrika dan Statistik dengan Eviews (W. W. Winarno (ed.); 4th ed.). UPP STIM YKPN.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Informatika Universitas Pamulang have CC-BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Informatika Universitas Pamulang recognize that free access is better than priced access, libre access is better than free access, and libre under CC-BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
Jurnal Informatika Universitas Pamulang is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
YOU ARE FREE TO:
- Share : copy and redistribute the material in any medium or format
- Adapt : remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms