Tinjauan Literatur terhadap Metode Sistem Rekomendasi pada Pasar Online

Authors

  • Rama Dian Syah Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Gunadarma
  • Ahmad Hidayat Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Gunadarma

DOI:

https://doi.org/10.32493/informatika.v8i1.20114

Keywords:

Literature Review, Recommender System, Online Market

Abstract

Product Recommendations for e-commerce activities in online market are important in product promotion to buyers. The Recommendation System in e-commerce can take advantage of growing data to inform the best product recommendations for buyers. Recommendation systems provide great opportunities for businesses so that research on the development of Recommendation System methods is increasing nowadays. This study examines the development of the Recommendation System of e-commerce activities in online market. The purpose of this research is to see a comparison and summary of several studies that have been done. Comparisons and summaries of previous research produce an analysis of research progress and find out problems with the Recommendation System of ecommerce activities in online market. The results of this study provide insight for researchers about the development of research on Recommendation Systems of ecommerce activities in online market.

References

Alhijawi, B., & Kilani, Y. (2016). Using genetic algorithms for measuring the similarity values between users in collaborative ï¬ltering recommender systems. Proceedings of the IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), 3–8. https://doi.org/10.1109/icis.2016.7550751

Alhijawi, B., & Kilani, Y. (2020). A collaborative filtering recommender system using genetic algorithm. Information Processing and Management, 57(6), 102310. https://doi.org/10.1016/j.ipm.2020.102310

Aljunid, M. F., & Dh, M. (2020). An Efficient Deep Learning Approach for Collaborative Filtering Recommender System. Procedia Computer Science, 171(2019), 829–836. https://doi.org/10.1016/j.procs.2020.04.090

Aprilianti, M., Mahendra, R., & Budi, I. (2017). Implementation of weighted parallel hybrid recommender systems for e-commerce in Indonesia. 2016 International Conference on Advanced Computer Science and Information Systems, ICACSIS 2016, 321–326. https://doi.org/10.1109/ICACSIS.2016.7872772

Azizi, M., & Do, H. (2018). A collaborative filtering recommender system for test case prioritization in web applications. Proceedings of the ACM Symposium on Applied Computing, 1560–1567. https://doi.org/10.1145/3167132.3167299

Basori, B., & Cobena, D. Y. (2019). Pengembangan Media Berbasis Mind map untuk Meningkatkan Pemahaman Siswa pada Pelajaran Teknik Pengolahan Video. Elinvo (Electronics, Informatics, and Vocational Education), 4(2), 97–105. https://doi.org/10.21831/elinvo.v4i2.18434

Chen, W., Cai, F., Chen, H., & Rijke, M. D. E. (2019). Joint neural collaborative filtering for recommender systems. ACM Transactions on Information Systems, 37(4). https://doi.org/10.1145/3343117

Du, X., He, X., Yuan, F., Tang, J., Qin, Z., & Chua, T. S. (2019). Modeling embedding dimension correlations via convolutional neural collaborative filtering. ACM Transactions on Information Systems, 37(4). https://doi.org/10.1145/3357154

Esmaeili, L., Mardani, S., Golpayegani, S. A. H., & Madar, Z. Z. (2020). A novel tourism recommender system in the context of social commerce. Expert Systems with Applications, 149, 113301. https://doi.org/10.1016/j.eswa.2020.113301

Gomez-Uribe, C. A., & Hunt, N. (2015). The netflix recommender system: Algorithms, business value, and innovation. ACM Transactions on Management Information Systems, 6(4). https://doi.org/10.1145/2843948

Gridach, M. (2020). Hybrid deep neural networks for recommender systems. Neurocomputing, 413, 23–30. https://doi.org/10.1016/j.neucom.2020.06.025

Gupta, M., Thakkar, A., Aashish, Gupta, V., & Rathore, D. P. S. (2020). Movie Recommender System Using Collaborative Filtering. Proceedings of the International Conference on Electronics and Sustainable Communication Systems, ICESC 2020, Icesc, 415–420. https://doi.org/10.1109/ICESC48915.2020.9155879

Jiang, C., Duan, R., Jain, H. K., Liu, S., & Liang, K. (2015). Hybrid collaborative filtering for high-involvement products: A solution to opinion sparsity and dynamics. Decision Support Systems, 79, 195–208. https://doi.org/10.1016/j.dss.2015.09.002

Karimova, F. (2016). A Survey of e-Commerce Recommender Systems. European Scientific Journal, 12(34), 75–89. https://doi.org/10.19044/esj.2016.v12n34p75

Karydi, E., & Margaritis, K. (2016). Parallel and distributed collaborative filtering: A survey. ACM Computing Surveys, 49(2). https://doi.org/10.1145/2951952

Pal, A., Parhi, P., & Aggarwal, M. (2018). An improved content based collaborative filtering algorithm for movie recommendations. 2017 10th International Conference on Contemporary Computing, IC3 2017, 2018-Janua(August), 1–3. https://doi.org/10.1109/IC3.2017.8284357

Rojas, G., & Garrido, I. (2017). Toward a rapid development of social network-based recommender systems. IEEE Latin America Transactions, 15(4), 753–759. https://doi.org/10.1109/TLA.2017.7896404

Syah, R. D. (2020). Performa Algoritma User K-Nearest Neighbors pada Sistem Rekomendasi di Tokopedia. Jurnal Informatika Universitas Pamulang, 5(3), 302–306. https://doi.org/10.32493/informatika.v5i3.6312

Tanapattara, W., Ariya, N., & Chayada, S. (2019). Personalized Recommender System Using a Social Network Based Collaborative Filtering Technique. The 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunication and Information Technology (ECTI-CON 2019), 7–10. https://doi.org/10.1109/ECTI-CON47248.2019.8955422

Tee, T. K., Azman, M. N. A., Mohamed, S., Mohamad, M. M., Yunos, J., Yee, M. H., & Othman, W. (2014). Buzan Mind Mapping : An Efficient Technique for. International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering, 8(1), 28–31.

Troussas, C., Krouska, A., & Virvou, M. (2018). Multi-algorithmic techniques and a hybrid model for increasing the efficiency of recommender systems. Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI, 2018-Novem, 184–188. https://doi.org/10.1109/ICTAI.2018.00037

Véras, D., Prota, T., Bispo, A., Prudêncio, R., & Ferraz, C. (2015). A literature review of recommender systems in the television domain. Expert Systems with Applications, 42(22), 9046–9076. https://doi.org/10.1016/j.eswa.2015.06.052

Wang, D., Yih, Y., & Ventresca, M. (2020). Improving neighbor-based collaborative filtering by using a hybrid similarity measurement. Expert Systems with Applications, 160, 113651. https://doi.org/10.1016/j.eswa.2020.113651

Zhao, F., Ya, F., Jin, H., Yang, L. T., & Yu, C. (2017). Personalized mobile searching approach based on combining content-based filtering and collaborative filtering. IEEE Systems Journal, 11(1), 324–332. https://doi.org/10.1109/JSYST.2015.2472996

Downloads

Published

2023-03-31