Implementasi Metode K-Means Clustering pada Sistem Rekomendasi Dosen Tetap Berdasarkan Penilaian Dosen

Authors

DOI:

https://doi.org/10.32493/informatika.v3i4.2133

Keywords:

k-means clustering, lecturer, assessment, recommendation, university

Abstract

Qualified lecturers can be one of the recommendations for lecturers to become permanent lecturers. The requirement to become a lecturer is to be able to teach, educate, and broaden the horizons of the students he teaches. One way to get qualified lecturers is to evaluate the performance of lecturers at the end of each semester, to find out whether the lecturer has a good performance or not. The use of the K-means clustering method as a system aide in determining lecturer recommendations will greatly assist the university in appointing lecturers as permanent lecturers. The way to work on the K-means clustering method is to find the centroid value in the value of each lecturer and in the process of getting a permanent lecturer candidate. In the results of the calculation of the K-means clustering method for 70 lecturers' assessment data in the system, which included a decent category there were 39 data. In this case, the success rate of the K-means clustering method was obtained at 55.71% success rate.

References

Hendini, A. (2016). Pemodelan UML Sistem Informasi Monitoring Penjualan Dan Stok Barang (Studi Kasus : Distro Zhezha Pontianak). Jurnal Khatulistiwa Informatika, vol. IV, no. 2, pp. 107-1016.

J. O. Ong, "Implementasi Algoritma K-means Clustering Untuk Menentukan Strategi Marketing President University," Jurnal Ilmiah Teknik Industri, vol. 12, no. 1, pp. 10-20, 2013.

M. Rosmiati, "Analisis dan Perancangan E-Service Untuk Pelanggan Pada Jaya Bersama Konveksi," Indonesian Journal on Software Engineering, vol. 1, no. 1, pp. 1-7, 2015.

Muslihudin, M., Triananingsih, F., Kasmi, & Anggraei, L. (2017). Pembuatan Model Penilaian Indeks Kinerja Dosen Menggunakan Metode Fuzzy Simple Additive Weighting. Seminar Nasional Teknologi Informasi dan Multimedia, 5(1), 25-30.

Muzakir, A. (2014). Analisa Dan Pemnafaatan Algoritma K-Means Clustering Pada Data Nilai Siswa Sebagai Penentuan Penerimaan Beasiswa. Prosiding Seminar Nasional Aplikasi Sains & Teknologi , 195-200.

Nagesh, A. S., & Satyamurty, C. V. (2018). Aplication of Clustering Algorithm for Analysis of Student Academic Performance. Internasional Journal of Computer Science and Egineering, 6(1), 381-384.

Nasari, F., & Darma, S. (2015). Penerapan K-Means Clustering Pada Data Penerimaan Mahasiswa Baru. Seminar Nasional Teknologi Informasi dan Multimedia, 73-78.

Parlina, I., Windarto, A. P., Wanto, A., & Lubis, M. R. (2018). Memanfaatkan Algoritma K-Means Dalam Menentukan Pegawai Yang Layak Mengikuti Asessment Center Untuk Clustering Program SDP. Journal of Computer Engineering System and Science, 3(1), 87-93.

Purnamasari , I., & Afnisari, K. (2018). Performasi Klasifikasi Dosen Berprestasi Menggunakan Metode Naive Bayes Classifier. Jurnal Komputer dan Informatika Akademi Bina Sarana Informatika, XX(2), 45-50.

Raval, U. R., & Jani, C. (2016). Implementasi & Improvisation of K-Means Clustering Algorithm. Internasional Journal of Computer Science and Mobile Computing, 55(5), 191-203.

Santoso and R. Nurimalina, "Perencanaan dan Pengembangan Aplikasi Absensi Mahasiswa Menggunakan Smart Card Guna Pengembangan Kampus Cerdas (Studi Kasus Politeknik Negeri Tanah Laut)," Jurnal Integrasi, vol. 9, no. 1, pp. 84-91, 2017.

Wahyuningtyas, E. U., Putri, R. M., & Sutrisno. (2018). Optimasi K-Means Untuk Clustering Dosen Berdasarkan Kinerja Akademik Menggunakan Algoritma Genetika Paralel. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 2(8), 2628-2635.

Published

2018-12-30