Sistem Klasifikasi Berita Menggunakan Metode Text Mining pada Website Pusat Kegiatan Belajar Masyarakat

Authors

DOI:

https://doi.org/10.32493/informatika.v8i2.24788

Keywords:

Classification System, Text mining, Stemming Algorithm, TF-IDF Algorithm, PKBM

Abstract

The use of information systems via websites is not uncommon in this current era. This is because the importance of information quality can affect trust, credibility of an organization, and often used as a promotional media. However, the problem arises when there are increasing numbers of news to be informed, which becomes a problem for web managers. Therefore, a faster method and proper news classification system is needed to avoid future problems. Thus, this research uses the text mining method and pure Term Frequency algorithm to calculate the weight of each word, in order to determine which category the news belongs to automatically. To simplify the system design process, Unified Modeling Language (UML) and PIECES analysis are used to analyze the impact factors that will arise later. Based on the results of the classification system testing, it has been able to provide solutions to categorize information in PKBM, even though there are many news articles with different categories.

References

Berezina, K., Bilgihan, A., Cobanoglu, C., & Okumus, F. 2016. Understanding satisfied and dissatisfied hotel customers: text mining of online hotel reviews. Journal of Hospitality Marketing & Management, 25 (1), 1–24.

Bhirawa, C.L. & Puryono, D.A., 2017. Rancang Bangun Aplikasi Graduation News Motivasi Berkreasi Untuk Warga Belajar PKBM Berbasis Android. Indonesian Journal on Networking and Security, 6(3), pp.8–15.

Deolika, A., Kusrini, K., & Luthfi, E. T. (2019). Analisis Pembobotan Kata Pada Klasifikasi Text Mining. (JurTI) Jurnal Teknologi Informasi, 3(2), 179-184.

Faula Azmie, M., 2015. Manajemen Pengelolaan Portal Berita Www.Goriau.Com Dalam Menarik Minat Baca Pada Media Sosial. Jom FISIP, 2(1), pp.1–15.

Gao, X., Tan, R., & Li, G, 2020. Research on text mining of material science based on natural language processing. In IOP conference series: materials science and engineering (Vol. 768, No. 7, p. 072094). IOP Publishing.

KBBI. 2021 Kamus Besar Bahasa Indonesia. [Online]: Available : https://kbbi.web.id/berita

Maarif, A.A., 2015. Penerapan Algoritma TF-IDF untuk Pencarian Karya Ilmiah, (5), p.1-4.

Novitasari, D., 2016. Perbandingan Algoritma Stemming Porter Denganarifin Setiono Untuk Menentukan Tingkat Ketepatan Kata Dasar. , 1(2), pp.193–202.

Raharjo, S. & Winarko, E., 2014. Klasterisasi, klasifikasi dan peringkasan teks berbahasa indonesia. Kommit 2014, 8, pp.391–401.

Thaha, A. R., & Aziz, F. 2020. Penambangan Teks Pada Tujuan Wisata di Bandung Raya (Studi Kasus: Tangkuban Perahu dan Kawah Putih). Jurnal Sekretaris dan Administrasi Bisnis, 4(2), 146-156.

Yulaelawati, E., 2012. Standar Dan Prosedur Penyelenggaraan Pusat Kegiatan Belajar Masyarakat (PKBM).Jurnal Akrab , 7-50.

Downloads

Published

2023-06-30