Penerapan Metode SVM pada Klasifikasi Sentimen terhadap Anies Baswedan sebagai Bakal Calon Presiden 2024

Authors

  • Ramadanu Putra Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Yusra Yusra Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Muhammad Fikry Universitas Islam Negeri Sultan Syarif Kasim Riau

DOI:

https://doi.org/10.32493/informatika.v8i2.30355

Keywords:

Classification, Presidential Candidates, Sentiment, Support Vector Machine, RBF Kernel

Abstract

Twitter is one of the most popular and rapidly growing platforms. Through Twitter, users can write and share various activities and opinions, including opinions about 2024 presidential candidates. Several candidates who are suitable to replace the president of Indonesia in 2024 have become the talk of the news media. Anies Baswedan is one of the presidential candidates who has been proposed by the National Democratic Party (NasDem) on October 3, 2022. The opinions of Twitter users can be seen through tweets about Anies Baswedan as a 2024 presidential candidate. These tweets can be analyzed to obtain information on public sentiment towards Anies Baswedan as a 2024 presidential candidate. Therefore, this study aims to apply the Support Vector Machine method in classifying sentiment towards Anies Baswedan as a 2024 presidential candidate. The dataset amounted to 3400 with positive labels as many as 2130 tweets and negative labels as many as 1270 tweets. Labeling is done manually with crowdsourced labelling techniques, obtained a kappa value of 0.68 which shows the level of agreement is relatively strong. Text preprocessing process is carried out. The dataset is divided into training data and test data with a ratio of 90:10. The SVM model with RBF kernel using C=9 and γ=2 parameter pairs has successfully produced good results in validation and evaluation. The accuracy results obtained were 90.61%, precision of 90.67%, recall of 90.61% and f1-score of 90.61%.

Author Biographies

Ramadanu Putra, Universitas Islam Negeri Sultan Syarif Kasim Riau

Program Studi Teknik Informatika

Yusra Yusra, Universitas Islam Negeri Sultan Syarif Kasim Riau

Program Studi Teknik Informatika

Muhammad Fikry, Universitas Islam Negeri Sultan Syarif Kasim Riau

Program Studi Teknik Informatika

References

Andi, R. (2022). Popularitas Tokoh Politik Di Indonesia (1-17 Oktober 2022). Retrieved from https://pers.droneemprit.id/popularitas-tokoh-politik-di-indonesia-2/

Chairunnisa, C., & Mega Santoni, M. (2022). Klasifikasi Sentimen Ulasan Pengguna Aplikasi PeduliLindungi di Google Play Menggunakan Algoritma Support Vector Machine dengan Seleksi Fitur Chi-Square. JURNAL INFORMATIK Edisi Ke-18, 1, 69–79. doi: 10.52958/iftk.v17i4.4594

Daqiqil, I. (2021). MACHINE LEARNING : Teori, Studi Kasus dan Implementasi Menggunakan Pyhton (I. Daqiqil, Ed.; 1st ed.). Pekanbaru: UR PRESS.

Dirgantara, A. (2022). Nasdem Resmi Deklarasikan Anies Baswedan Jadi Capres 2024. Retrieved from https://nasional.kompas.com/read/2022/10/03/10440681/nasdem-resmi-deklarasikan-anies-baswedan-jadi-capres-2024

Fitriyani, N., & Hartanto, A. (2020). Analisis Sentimen Terhadap Tokoh Publik Menggunakan Support Vector Machine. MEANS (Media Informasi Analisa Dan Sistem), 5(1), 8–12. doi: 10.54367/means.v5i1.615

Hafiz Yunas, A. (2018). Klasifikasi Tweet E-Commerce dengan Menggunakan Metode Support Vector Machine. Jurnal CoreIT, 4(2). doi: 10.24014/coreit.v4i2.5205

Herlinawati, N., Yuliani Yuri, Faizah Siti, Gata Windu, Samudi, a, & b. (2020). Analisis Sentimen Zoom Cloud Meetings Di Play Store Menggunakan Naïve Bayes Dan Support Vector Machine. CESS (Journal of Computer Engineering System and Science), 5(2), 293–298. doi: 10.24114/cess.v5i2.18186

Nugroho, G., Murdiansyah, D., Lhaksmana, K., a, b, c, & d. (2021). Analisis Sentimen Pemilihan Presiden Amerika 2020 di Twitter Menggunakan Naïve Bayes dan Support Vector Machine. E-Proceeding of Engineering, 8(5), 10106–10115. Retrieved from https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/15727/15440

Pohan, R., Ratnawati, D., & Arwani, I. (2022). Implementasi Algoritma Support Vector Machine dan Model Bag-of-Words dalam Analisis Sentimen mengenai PILKADA 2020 pada Pengguna Twitter. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 6(10), 4924–4931. Retrieved from http://j-ptiik.ub.ac.id

Pravina, A. M., Cholissodin, I., & Adikara, P. P. (2019). Analisis Sentimen Tentang Opini Maskapai Penerbangan pada Dokumen Twitter Menggunakan Algoritme Support Vector Machine (SVM). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(3), 2789–2797. Retrieved from http://j-ptiik.ub.ac.id

Purnawan, H. (2022). Sah, Pemilu 14 Februari 2024 Disepakati DPR, Pemerintah, dan Penyelenggara Pemilu. Retrieved from https://bawaslu.go.id/id/berita/sah-pemilu-14-februari-2024-disepakati-dpr-pemerintah-dan-penyelenggara-pemilu-1

Putri, M. I., & Kharisudin, I. (2022). Analisis Sentimen Pengguna Aplikasi Marketplace Tokopedia Pada Situs Google Play Menggunakan Metode Support Vector Machine (SVM), Naïve Bayes, dan Logistic Regression. PRISMA, Prosiding Seminar Nasional Matematika, 5, 759–766. Retrieved from https://journal.unnes.ac.id/sju/index.php/prisma/

Reyvaldi, P., Rudi Septian, Zaim Alkholis, Muhammad Rizki Widyanto, Muhammad Aditya Prayoga S., Yuyevin Zebua, Eka Kristianto Daeli, Heru Eko Ajisaputro, Rada Rasi Saputri, Alifia Fatwa Hakim, & Sofyan Muhti Prasetiyo. (2022). Pengenalan Internet Sehat Untuk Membangun Generasi Yang Cerdas, Modern Dan Religius Di Asrama Yatim & Dhu’afa Yayasan Sahabat Yatim Mandiri. JATIMIKA, 3(2), 337–340. Retrieved from http://openjournal.unpam.ac.id/index.php/JATIMIKA/article/view/20837

Riyanto, A. (2020). Hootsuite (We are Social): Indonesian Digital Report 2020. Retrieved from https://andi.link/hootsuite-we-are-social-indonesian-digital-report-2020/

Riyanto, A. (2021). Hootsuite (We are Social): Indonesian Digital Report 2021. Retrieved from https://andi.link/hootsuite-we-are-social-indonesian-digital-report-2021/

Riyanto, A. (2022). Hootsuite (We are Social): Indonesian Digital Report 2022. Retrieved from https://andi.link/hootsuite-we-are-social-indonesian-digital-report-2022/

Riyanto, A. (2023). Hootsuite (We are Social): Indonesian Digital Report 2023. Retrieved from https://andi.link/hootsuite-we-are-social-indonesian-digital-report-2023/

Widayani, W., & Harliana. (2021). Analisis Support Vector Machine Untuk Pemberian Rekomendasi Penundaan Biaya Kuliah Mahasiswa. Jurnal Sains Dan Informatika, 7(1), 20–27. doi: 10.34128/jsi.v7i1.268

Downloads

Published

2023-06-30