Penerapan Metode SVM pada Klasifikasi Sentimen terhadap Anies Baswedan sebagai Bakal Calon Presiden 2024
DOI:
https://doi.org/10.32493/informatika.v8i2.30355Keywords:
Classification, Presidential Candidates, Sentiment, Support Vector Machine, RBF KernelAbstract
Twitter is one of the most popular and rapidly growing platforms. Through Twitter, users can write and share various activities and opinions, including opinions about 2024 presidential candidates. Several candidates who are suitable to replace the president of Indonesia in 2024 have become the talk of the news media. Anies Baswedan is one of the presidential candidates who has been proposed by the National Democratic Party (NasDem) on October 3, 2022. The opinions of Twitter users can be seen through tweets about Anies Baswedan as a 2024 presidential candidate. These tweets can be analyzed to obtain information on public sentiment towards Anies Baswedan as a 2024 presidential candidate. Therefore, this study aims to apply the Support Vector Machine method in classifying sentiment towards Anies Baswedan as a 2024 presidential candidate. The dataset amounted to 3400 with positive labels as many as 2130 tweets and negative labels as many as 1270 tweets. Labeling is done manually with crowdsourced labelling techniques, obtained a kappa value of 0.68 which shows the level of agreement is relatively strong. Text preprocessing process is carried out. The dataset is divided into training data and test data with a ratio of 90:10. The SVM model with RBF kernel using C=9 and γ=2 parameter pairs has successfully produced good results in validation and evaluation. The accuracy results obtained were 90.61%, precision of 90.67%, recall of 90.61% and f1-score of 90.61%.References
Andi, R. (2022). Popularitas Tokoh Politik Di Indonesia (1-17 Oktober 2022). Retrieved from https://pers.droneemprit.id/popularitas-tokoh-politik-di-indonesia-2/
Chairunnisa, C., & Mega Santoni, M. (2022). Klasifikasi Sentimen Ulasan Pengguna Aplikasi PeduliLindungi di Google Play Menggunakan Algoritma Support Vector Machine dengan Seleksi Fitur Chi-Square. JURNAL INFORMATIK Edisi Ke-18, 1, 69–79. doi: 10.52958/iftk.v17i4.4594
Daqiqil, I. (2021). MACHINE LEARNING : Teori, Studi Kasus dan Implementasi Menggunakan Pyhton (I. Daqiqil, Ed.; 1st ed.). Pekanbaru: UR PRESS.
Dirgantara, A. (2022). Nasdem Resmi Deklarasikan Anies Baswedan Jadi Capres 2024. Retrieved from https://nasional.kompas.com/read/2022/10/03/10440681/nasdem-resmi-deklarasikan-anies-baswedan-jadi-capres-2024
Fitriyani, N., & Hartanto, A. (2020). Analisis Sentimen Terhadap Tokoh Publik Menggunakan Support Vector Machine. MEANS (Media Informasi Analisa Dan Sistem), 5(1), 8–12. doi: 10.54367/means.v5i1.615
Hafiz Yunas, A. (2018). Klasifikasi Tweet E-Commerce dengan Menggunakan Metode Support Vector Machine. Jurnal CoreIT, 4(2). doi: 10.24014/coreit.v4i2.5205
Herlinawati, N., Yuliani Yuri, Faizah Siti, Gata Windu, Samudi, a, & b. (2020). Analisis Sentimen Zoom Cloud Meetings Di Play Store Menggunakan Naïve Bayes Dan Support Vector Machine. CESS (Journal of Computer Engineering System and Science), 5(2), 293–298. doi: 10.24114/cess.v5i2.18186
Nugroho, G., Murdiansyah, D., Lhaksmana, K., a, b, c, & d. (2021). Analisis Sentimen Pemilihan Presiden Amerika 2020 di Twitter Menggunakan Naïve Bayes dan Support Vector Machine. E-Proceeding of Engineering, 8(5), 10106–10115. Retrieved from https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/15727/15440
Pohan, R., Ratnawati, D., & Arwani, I. (2022). Implementasi Algoritma Support Vector Machine dan Model Bag-of-Words dalam Analisis Sentimen mengenai PILKADA 2020 pada Pengguna Twitter. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 6(10), 4924–4931. Retrieved from http://j-ptiik.ub.ac.id
Pravina, A. M., Cholissodin, I., & Adikara, P. P. (2019). Analisis Sentimen Tentang Opini Maskapai Penerbangan pada Dokumen Twitter Menggunakan Algoritme Support Vector Machine (SVM). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(3), 2789–2797. Retrieved from http://j-ptiik.ub.ac.id
Purnawan, H. (2022). Sah, Pemilu 14 Februari 2024 Disepakati DPR, Pemerintah, dan Penyelenggara Pemilu. Retrieved from https://bawaslu.go.id/id/berita/sah-pemilu-14-februari-2024-disepakati-dpr-pemerintah-dan-penyelenggara-pemilu-1
Putri, M. I., & Kharisudin, I. (2022). Analisis Sentimen Pengguna Aplikasi Marketplace Tokopedia Pada Situs Google Play Menggunakan Metode Support Vector Machine (SVM), Naïve Bayes, dan Logistic Regression. PRISMA, Prosiding Seminar Nasional Matematika, 5, 759–766. Retrieved from https://journal.unnes.ac.id/sju/index.php/prisma/
Reyvaldi, P., Rudi Septian, Zaim Alkholis, Muhammad Rizki Widyanto, Muhammad Aditya Prayoga S., Yuyevin Zebua, Eka Kristianto Daeli, Heru Eko Ajisaputro, Rada Rasi Saputri, Alifia Fatwa Hakim, & Sofyan Muhti Prasetiyo. (2022). Pengenalan Internet Sehat Untuk Membangun Generasi Yang Cerdas, Modern Dan Religius Di Asrama Yatim & Dhu’afa Yayasan Sahabat Yatim Mandiri. JATIMIKA, 3(2), 337–340. Retrieved from http://openjournal.unpam.ac.id/index.php/JATIMIKA/article/view/20837
Riyanto, A. (2020). Hootsuite (We are Social): Indonesian Digital Report 2020. Retrieved from https://andi.link/hootsuite-we-are-social-indonesian-digital-report-2020/
Riyanto, A. (2021). Hootsuite (We are Social): Indonesian Digital Report 2021. Retrieved from https://andi.link/hootsuite-we-are-social-indonesian-digital-report-2021/
Riyanto, A. (2022). Hootsuite (We are Social): Indonesian Digital Report 2022. Retrieved from https://andi.link/hootsuite-we-are-social-indonesian-digital-report-2022/
Riyanto, A. (2023). Hootsuite (We are Social): Indonesian Digital Report 2023. Retrieved from https://andi.link/hootsuite-we-are-social-indonesian-digital-report-2023/
Widayani, W., & Harliana. (2021). Analisis Support Vector Machine Untuk Pemberian Rekomendasi Penundaan Biaya Kuliah Mahasiswa. Jurnal Sains Dan Informatika, 7(1), 20–27. doi: 10.34128/jsi.v7i1.268
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Informatika Universitas Pamulang have CC-BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Informatika Universitas Pamulang recognize that free access is better than priced access, libre access is better than free access, and libre under CC-BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
Jurnal Informatika Universitas Pamulang is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
YOU ARE FREE TO:
- Share : copy and redistribute the material in any medium or format
- Adapt : remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms