Implementasi Algoritma Klasifikasi Dengan Teknik Discretization Dan Bagging Untuk Meningkatkan Akurasi Prediksi Penyakit Stroke
DOI:
https://doi.org/10.32493/informatika.v8i2.30550Keywords:
Computer ScienceAbstract
Penyakit stroke merupakan salah satu penyakit penyebab kematian namun dapat dikurangi jumlah angka kematiannya apabila terdapat diagnosa sejak secara dini untuk memprediksi penyakit stroke yang akurat. Penelitian yang terkait prediksi penyakit stroke telah dilakukan dengan beberapa metode namun menghasilkan tingkat akurasi yang kurang maksimal pada algoritma klasifikasi, sehingga diperlukan adanya upaya peningkatan akurasi untuk menghasilkan informasi yang akurat dalam menprediksi penyakit stroke. Tujuan dari penelitian ini yaitu melakukan implementasi algoritma klasifikasi dengan menerapkan teknik discretization dan Bagging dalam meningkatkan predikasi penyakit stroke. Hasil yang diperoleh dari penelitian ini adalah algoritma klasifikasi Naïve Bayes dengan menggabungkan teknik discretization dan Bagging memiliki tingkat akurasi lebih tinggi dengan akurasi sebesar 95.21%, meningkat sebesar 7.36% dari pada hanya menggunakan algoritma tunggal saja.
Keywords: Penyakit Stroke, Algoritma Klasifikasi, Discretization, Bagging
References
Ahmed, H., Abd-el, S. F., Youn, E. M. G., & Omran, N. F. (2019). Stroke Prediction using Distributed Machine Learning Based on Apache Spark Stroke Prediction using Distributed Machine Learning Based on Apache Spark. January. https://doi.org/10.13140/RG.2.2.13478.68162
Alasadi, S. A., & Bhaya, W. S. (2017). Review of data preprocessing techniques in data mining. Journal of Engineering and Applied Sciences, 12(16), 4102–4107. https://doi.org/10.3923/jeasci.2017.4102.4107
Anggi Priliani Yulianto, & Darwis, S. (2021). Penerapan Metode K-Nearest Neighbors (kNN) pada Bearing. Jurnal Riset Statistika, 1(1), 10–18. https://doi.org/10.29313/jrs.v1i1.16
Bhatia, S., & Malhotra, J. (2021). Naïve bayes classifier for predicting the novel coronavirus. Proceedings of the 3rd International Conference on Intelligent Communication Technologies and Virtual Mobile Networks, ICICV 2021, Icicv, 880–883. https://doi.org/10.1109/ICICV50876.2021.9388410
Biswas, N., Uddin, K. M. M., Rikta, S. T., & Dey, S. K. (2022). A comparative analysis of machine learning classifiers for stroke prediction: A predictive analytics approach. Healthcare Analytics, 2(August), 100116. https://doi.org/10.1016/j.health.2022.100116
Buntoro, G. A. (2017). Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter. 2(1), 32–41.
Charbuty, B., & Abdulazeez, A. (2021). Classification Based on Decision Tree Algorithm for Machine Learning. Journal of Applied Science and Technology Trends, 2(01), 20–28. https://doi.org/10.38094/jastt20165
Derisma, D. (2020). Perbandingan Kinerja Algoritma untuk Prediksi Penyakit Jantung dengan Teknik Data Mining. Journal of Applied Informatics and Computing, 4(1), 84–88. https://doi.org/10.30871/jaic.v4i1.2152
Dev, S., Wang, H., Shamrock, C., Jain, N., Veeravalli, B., & John, D. (2022). A predictive analytics approach for stroke prediction using machine learning and neural networks. Healthcare Analytics, 2(December 2021), 100032. https://doi.org/10.1016/j.health.2022.100032
GarcÃa-Gil, D., RamÃrez-Gallego, S., GarcÃa, S., & Herrera, F. (2018). Principal Components Analysis Random Discretization Ensemble for Big Data. Knowledge-Based Systems, 150, 166–174. https://doi.org/10.1016/j.knosys.2018.03.012
Hacibeyoglu, M., & Ibrahim, M. H. (2018). EF_Unique: An Improved Version of Unsupervised Equal Frequency Discretization Method. Arabian Journal for Science and Engineering, 43(12), 7695–7704. https://doi.org/10.1007/s13369-018-3144-z
Kabari, L. G., & Onwuka, U. C. (2019). Comparison of Bagging and Voting Ensemble Machine Learning Algorithm as a Classifier. International Journals of Advanced Research in Computer Science and Software Engineering, 9(3), 19–23. www.ijarcsse.com,
Kemenkes RI. (2018). Hasil Riset Kesehatan Dasar Tahun 2018. Kementrian Kesehatan RI, 53(9), 1689–1699.
Lee, S. J., Xu, Z., Li, T., & Yang, Y. (2018). A novel bagging C4.5 algorithm based on wrapper feature selection for supporting wise clinical decision making. Journal of Biomedical Informatics, 78(October 2017), 144–155. https://doi.org/10.1016/j.jbi.2017.11.005
Moshkov, M. (2022). Decision trees for regular factorial languages. Array, 15(January), 100203. https://doi.org/10.1016/j.array.2022.100203
Osman, A. S. (2019). Data mining techniques: Review. International Journal of Data Science Research, 2(1), 1–4.
Panhalkar, A. R., & Doye, D. D. (2022). Optimization of decision trees using modified African buffalo algorithm. Journal of King Saud University - Computer and Information Sciences, 34(8), 4763–4772. https://doi.org/10.1016/j.jksuci.2021.01.011
Peker, N., & Kubat, C. (2021). Application of Chi-square discretization algorithms to ensemble classification methods. Expert Systems with Applications, 185(June 2020), 115540. https://doi.org/10.1016/j.eswa.2021.115540
Riyanto, U. (2019). Analisis Perbandingan Algoritma Naive Bayes Dan Support Vector Machine Dalam Mengklasifikasikan Jumlah Pembaca Artikel Online. JIKA (Jurnal Informatika), 2(2), 62–72. https://doi.org/10.31000/.v2i2.1521
Saleh, A., & Nasari, F. (2018). Implementation Equal-Width Interval Discretization in Naive Bayes Method for Increasing Accuracy of Students’ Majors Prediction. Lontar Komputer : Jurnal Ilmiah Teknologi Informasi, September, 104. https://doi.org/10.24843/lkjiti.2018.v09.i02.p05
Salmi, N., & Rustam, Z. (2019). Naïve Bayes Classifier Models for Predicting the Colon Cancer. IOP Conference Series: Materials Science and Engineering, 546(5). https://doi.org/10.1088/1757-899X/546/5/052068
Srinivas, B., & Sasibhushana Rao, G. (2019). A hybrid CNN-KNN model for MRI brain tumor classification. International Journal of Recent Technology and Engineering, 8(2), 5230–5235. https://doi.org/10.35940/ijrte.B1051.078219
Sudarsono, B. G., Leo, M. I., Santoso, A., & Hendrawan, F. (2021). Analisis Data Mining Data Netflix Menggunakan Aplikasi Rapid Miner. JBASE - Journal of Business and Audit Information Systems, 4(1), 13–21. https://doi.org/10.30813/jbase.v4i1.2729
Tuysuzoglu, G., & Birant, D. (2020). Enhanced bagging (eBagging): A novel approach for ensemble learning. International Arab Journal of Information Technology, 17(4), 515–528. https://doi.org/10.34028/iajit/17/4/10
Virantika, E., Kusnawi, K., & Ipmawati, J. (2022). Evaluasi Hasil Pengujian Tingkat Clusterisasi Penerapan Metode K-Means Dalam Menentukan Tingkat Penyebaran Covid-19 di Indonesia. Jurnal Media Informatika Budidarma, 6(3), 1657. https://doi.org/10.30865/mib.v6i3.4325
Widaningsih, S. (2019). Perbandingan Metode Data Mining Untuk Prediksi Nilai Dan Waktu Kelulusan Mahasiswa Prodi Teknik Informatika Dengan Algoritma C4,5, Naïve Bayes, Knn Dan Svm. Jurnal Tekno Insentif, 13(1), 16–25. https://doi.org/10.36787/jti.v13i1.78
Wu, Y., Ke, Y., Chen, Z., Liang, S., Zhao, H., & Hong, H. (2020). Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping. Catena, 187(February 2018), 104396. https://doi.org/10.1016/j.catena.2019.104396
Xing, W., & Bei, Y. (2020). Medical Health Big Data Classification Based on KNN Classification Algorithm. IEEE Access, 8, 28808–28819. https://doi.org/10.1109/ACCESS.2019.2955754
Yang, F. J. (2018). An implementation of naive bayes classifier. Proceedings - 2018 International Conference on Computational Science and Computational Intelligence, CSCI 2018, 301–306. https://doi.org/10.1109/CSCI46756.2018.00065
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Informatika Universitas Pamulang have CC-BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Informatika Universitas Pamulang recognize that free access is better than priced access, libre access is better than free access, and libre under CC-BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
Jurnal Informatika Universitas Pamulang is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
YOU ARE FREE TO:
- Share : copy and redistribute the material in any medium or format
- Adapt : remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms