Klasifikasi Penyakit Stroke Jaringan Syaraf Tiruan Menerapkan Metode Learning Vector Quantization
DOI:
https://doi.org/10.32493/informatika.v8i2.31359Keywords:
Klasifikasi, Learning Vector Quantization, StrokeAbstract
Penyakit Stroke ialah salah satu penyebab kematian paling umum dan sering terjadi didunia termasuk Asia setelah penyakit jantung koroner dan kanker. Pemecahan masalah dengan melakukan klasifikasi penyakit stroke menggunakan metode Learning Vector Quantization (LVQ) dengan mengklasifikasikan data stroke dan tidak stroke (normal) berdasarkan gejala penyakit. Adapun dataset diperoleh dari situs Kaggle berjumlah 4981 data yang memiliki 10 variabel diantaranya jenis kelamin, usia, status pernikahan, hipertensi, penyakit jantung, tipe kerja, tipe tempat tinggal, tingkat avg glukosa, BMI (indeks massa tubuh), dan smoking status. Data tersebut dilakukan klasifikasi LVQ dengan membagi data yaitu 90:10, 80:20, 70:30 dan 60:40 dan parameter learning rate = 0,01 dan 0,001 serta epoch 1000. Dari proses klasifikasi tersebut maka didapatkan hasil akurasi tertinggi 70% dengan presisi 0,72 recall 0,70 dan f1 score 0,69, diperoleh dengan membagi data 90% : 10%. Berdasarkan hasil tersebut, metode LVQ pada penelitian ini mampu melakukan klasifikasi penyakit stroke dengan cukup baik.References
Adinugroho, S., & Sari, Y. A. (2017). Perbandingan Jaringan Learning Vector Quantization dan Backpropagation pada Klasifikasi Daun Berbasiskan Fitur Gabungan. Jurnal Informatika & Multimedia, 9(02), 58–64.
Agustinus, I., Santoso, E., & Rahayudi, B. (2018). Klasifikasi Risiko Hipertensi Menggunakan Metode Learning Vector Quantization (LVQ). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer,
Antares, J. (2020). Artificial Neural Network Dalam Mengidentifikasi Penyakit Stroke Menggunakan Metode Backpropagation (Studi Kasus di Klinik Apotik Madya Padang). Djtechno: Jurnal Teknologi Informasi, 1(1), 6–13.
Aziz, A. R., Warsito, B., & Prahutama, A. (2021). Pengaruh Transformasi Data Pada Metode Learning Vector Quantization Terhadap Akurasi Klasifikasi Diagnosis Penyakit Jantung. Jurnal Gaussian, 10(1), 21–30.
Chandra, R., & Juan, D. C. (2022). Deteksi Pesan Spam pada Forum Daring Menggunakan Metode Naïve Bayes. Jurnal Informatika Universitas Pamulang, 7(2), 369–373.
Kamel, H., Navi, B. B., Parikh, N. S., Merkler, A. E., Okin, P. M., Devereux, R. B., Weinsaft, J. W., Kim, J., Cheung, J. W., Kim, L. K., Casadei, B., Iadecola, C., Sabuncu, M. R., Gupta, A., & DÃaz, I. (2020). Machine Learning Prediction of Stroke Mechanism in Embolic Strokes of Undetermined Source. Stroke, 51(9), 203–210.
https://doi.org/10.1161/STROKEAHA.120.029305
Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of Machine-Learning Classification in Remote Sensing: An Applied Review. International Journal of Remote Sensing, 39(9), 2784–2817.
Mutiarasari, D. (2019). Ischemic Stroke: Symptoms, Risk Factors, and Prevention. Medika Tadulako, Jurnal Ilmiah Kedokteran, 6(1), 60–73.
Sakinah, N., Badriyah, T., & Syarif, I. (2020). Analisis Kinerja Algoritma Mesin Pembelajaran untuk Klarifikasi Penyakit Stroke Menggunakan Citra CT Scan. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 7(4), 833–844.
Setyowati, E., & Mariani, S. (2021). Penerapan Jaringan Syaraf Tiruan dengan Metode Learning Vector Quantization ( LVQ ) untuk Klasifikasi Penyakit Infeksi Saluran Pernapasan Akut (ISPA). PRISMA, Prosiding Seminar Nasional Matematika, 4, 514–523.
Tawakal, F., & Azkiya, A. (2020). Diagnosa Penyakit Demam Berdarah Dengue (DBD) menggunakan Metode Learning Vector Quantization (LVQ). JISKA (Jurnal Informatika Sunan Kalijaga), 4(3), 193–201.
Tsao, C. W., Aday, A. W., Almarzooq, Z. I., Alonso, A., Beaton, A. Z., Bittencourt, M. S., Boehme, A. K., Buxton, A. E., Carson, A. P., Commodore-Mensah, Y., Elkind, M. S. V., Evenson, K. R., Eze-Nliam, C., Ferguson, J. F., Generoso, G., Ho, J. E., Kalani, R., Khan, S. S.,
Kissela, B. M., … Martin, S. S. (2022). Heart Disease and Stroke Statistics-2022 Update: A Report from the American Heart Association. In Circulation
Turana, Y., Tengkawan, J., Chia, Y. C., Nathaniel, M., Wang, J. G.,
Sukonthasarn, A., Chen, C. H., Minh, H. Van, Buranakitjaroen, P.,
Shin, J., Siddique, S., Nailes, J. M., Park, S., Teo, B. W., Sison, J., Ann Soenarta, A., Hoshide, S., Tay, J. C., Prasad Sogunuru, G., … Kario, K. (2021). Hypertension and stroke in Asia: A comprehensive review from HOPE Asia. Journal of Clinical Hypertension, 23(3).
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Informatika Universitas Pamulang have CC-BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Informatika Universitas Pamulang recognize that free access is better than priced access, libre access is better than free access, and libre under CC-BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
Jurnal Informatika Universitas Pamulang is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
YOU ARE FREE TO:
- Share : copy and redistribute the material in any medium or format
- Adapt : remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms