Deteksi Tumor Otak Melalui Gambar MRI Berdasarkan Vision Transformers dengan Tensorflow dan Keras

Authors

  • Oki Akbar Supriadi Universitas Amikom Yogyakarta
  • Ema Utami Universitas Amikom Yogyakarta
  • Dhani Ariatmanto Universitas Amikom Yogyakarta

DOI:

https://doi.org/10.32493/informatika.v8i3.32707

Keywords:

Brain tumor, Vision Transformer, Tensorflow, Keras

Abstract

Brain tumor disease is a serious and complex health problem worldwide. Early and accurate detection of brain tumors has a major impact on patient care and prognosis. Magnetic Resonance Imaging (MRI) has become one of the main diagnostic tools in detecting brain tumors, manual interpretation of MRI images requires high clinical expertise and requires a long time. In recent years, advances in deep learning techniques and image processing have opened up new opportunities in the detection of brain tumors via MRI images. Deep learning techniques, especially the use of Vision Transformers (ViTs) models, have been successful in various complex pattern recognition tasks in images. The Vision Transformers model was chosen due to the performance improvements shown in many image recognition tasks, outperforming convolutional neural networks (CNN) based methods. Tensorflow and Keras are used as frameworks for development and training models, which have been proven effective and efficient in various previous studies. This study focuses on the performance of the Vision Transformer (ViT) in detecting brain tumors through two Magnetic Resonance Imaging (MRI) image datasets, with different numbers of datasets, as well as the maximum accuracy value that can be achieved from the ViT architecture. From several experimental parameters on ViT, the number of datasets and iterations, the results obtained from the first dataset with 253 image data obtained an accuracy value of 88%, and in the second study by combining the two datasets, with 3.123 data images obtained an accuracy of 97.9%.

Author Biography

Oki Akbar Supriadi, Universitas Amikom Yogyakarta

Magister Teknik Informatika

References

Adilah, T., 2022, Klasifikasi Tumor Otak Menggunakan Ekstraksi Fitur HOG dan Support Vector Machine, Jurnal Infortech, Volume 4 No. 1 Juni 2022, E-ISSN: 2715-8160

Alfikri, R. R., Utomo, M. S., Februariyanti, H., Nurwahyudi, e. A. (2022). Pembangunan Aplikasi Penerjemah Bahasa Isyarat Dengan Metode Cnn Berbasis Android. Jurnal Teknoinfo, 2(16), 183. https://doi.org/10.33365/jti.v16i2.1752.

Chicho, B. T. and Sallow, A. B. (2021). A Comprehensive Survey Of Deep Learning Models Based On Keras Framework. Journal of Soft Computing and Data Mining, 2(2). https://doi.org/10.30880/jscdm.2021.02.02.005

Chollet,. F. 2017, Deep Learning with Python, Manning Publications Co.3 Lewis Street Greenwich, CT, Amerika Serikat

Dao, Q. T., Cao, V., Do, L. N. L., Trinh, D. A. (2022). Design Of the Mobile-robot-based Surveillance System On University Campuses To Reduce The Effects Of Covid-19 Pandemic. Proceedings of the Sixth International Conference on Research in Intelligent and Computing. https://doi.org/10.15439/2021r4.

Dosovitskiy., A, 2021, An Image Is Worth 16x16 Words:Transformers For Image Recognition At Scale, Published as a conference paper at ICLR 2021, arXiv:2010.11929v2

Fattah, M. 2021, Pengolahan Citra Digital untuk Identifikasi Kanker Otak Menggunakan Metode Deep Belief Network (DBN), Jurnal Informatika Universitas Pamulang, Vol. 6, No. 4, Desember 2021 (735-742)

Febrianti, A., 2020, Klasifikasi Tumor Otak pada Citra Magnetic Resonance Image dengan Menggunakan Metode Support Vector Machine, JURNAL TEKNIK ITS Vol. 9, No. 1, (2020) ISSN: 2337-3539

Geron,. A. 2019, Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow, Second Editon, O’REILLY

Ghozali, M. (2021). Jurnal Review: Pengobatan Klinis Tumor Otak Pada Orang Dewasa. Jurnal Phi Jurnal Pendidikan Fisika Dan Fisika Terapan, 1(2), 1. https://doi.org/10.22373/p-jpft.v2i1.8302

Goodfellow., I. 2016, Deep Learning (Adaptive Computation and Machine Learning series), The MIT press.

Hope,. T. 2017, Learning TensorFlow A Guide To Building Deep Learning Systems, O’reilly

Houlsby,. N. ., 10 July 2023, Transformers for Image Recognition at Scale, https://ai.googleblog.com/2020/12/transformers-for-image-recognition-at.html

Kristian, M., Andryana, S., Gunaryati, A. (2021). Diagnosa Penyakit Tumor Otak Menggunakan Metode Waterfall Dan Algoritma Depth First Search. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 1(6), 11-24. https://doi.org/10.29100/jipi.v6i1.1840.

Loshchilov, I., 2017, Decoupled Weight Decay Regularization. arXiv preprint arXiv:1711.05101.

Numpy Developer., 10 July 2023, Numpy Documentation . https://numpy.org/devdocs/

PNPK Tumor otak, 2019, Pedoman Nasional Pelayanan Kedokteran Tumor Otak, Kementrian Kesehatan Republik Indonesia, Jakarta.

Pravitasari, A., 2020, UNet-VGG16 with transfer learning for MRI-based brain tumor segmentation, Telkomnika (Telecommunication Computing Electronics and Control) (2020) 1310-1318, 18(3)

Salman, L., 2022, Automated brain tumor detection of MRI image based on hybrid image processing techniques, Telkomnika (Telecommunication Computing Electronics and Control) (2022) 20(4) 762-771

Suta, I., Hartati, R., Divayana, Y. (2019). Diagnosa Tumor Otak Berdasarkan Citra Mri (Magnetic Resonance Imaging). Majalah Ilmiah Teknologi Elektro, 2(18). https://doi.org/10.24843/mite.2019.v18i02.p01

Tiku, J. C., Saputra, W. A., Prasetyo, N. A. (2022). Pengembangan Sistem Deteksi Memakai Masker Menggunakan Open Cv, Tensorflow Dan Keras. JURIKOM (Jurnal Riset Komputer), 4(9), 1183. https://doi.org/10.30865/jurikom.v9i4.4739.

Winnarto, M., 2022, Klasifikasi Jenis Tumor Otak Menggunakan Arsitekture Mobilenet V2, Jurnal SIMETRIS, Vol. 13 No. 2 November 2022

Wulansari, A. and Rahman, A. T. (2022). Analisa Gambar Citra Mri Otak Dengan Watershed Dan Ekstraksi Fitur Glcm. Jnanaloka, 39-46. https://doi.org/10.36802/jnanaloka.2022.v3-no2-39-46

Zhao, Z. (2023). The Effect Of Input Size On the Accuracy Of A Convolutional Neural Network Performing Brain Tumor Detection. International Conference on Mechatronics Engineering and Artificial Intelligence (MEAI 2022). https://doi.org/10.1117/12.2672694.

Downloads

Published

2023-09-30