Principal Component Analysis and Regional Coordinates on Face Recognition in Mobile-Based Attendance Systems

Authors

  • Indah Puspasari Handayani Universitas Budi Luhur
  • Rizky Pradana Universitas Budi Luhur

DOI:

https://doi.org/10.32493/informatika.v9i1.33362

Keywords:

Presence, Face Recognition, Mobile, Principal Component Analysis, Regional Coordinates

Abstract

The pattern of attendance in the world of work after the Covid-19 outbreak that hit the world, has apparently brought quite big changes, due to the taboo on gathering and using shared media which is considered a medium for the spread of bacteria/viruses. The way out of this is to use facial recognition and collaborate with location coordinates using a mobile application that can be used on each smartphone to authenticate workers in changing the characteristics of presence data, so that the presence process cannot be represented. The method used for face recognition in this research is Principal Component Analysis (PCA) by linearly transforming eigenvalues ​​and eigenvectors from extraction and reduction of faces captured from the mobile presence application. Based on the trials carried out, the success rate reached 78,667% for testing the functionality and strength of facial recognition.

References

Abbas, E. I., Safi, M. E., & Rijab, K. S. (2017). Face Recognition Rate Using Different Classifier Methods Based on PCA. International Conference on Current Research in Computer Science and Information Technology, ICCIT 2017, 37–40. https://doi.org/10.1109/CRCSIT.2017.7965559

Arsal, M., Wardijono, B. A., & Anggraini, D. (2020). Face Recognition Untuk Akses Pegawai Bank Menggunakan Deep Learning Dengan Metode CNN. Jurnal Nasional Teknologi dan Sistem Informasi, 06, 413–418. https://doi.org/10.1109/UBMK52708.2021.9559031

Budi, A., Suma’inna, & Maulana, H. (2016). Pengenalan Citra Wajah Sebagai Identifier Menggunakan Metode Principal Component Analysis (PCA). Jurnal Teknik Informatika, 9(2), 166–175. https://doi.org/10.15408/jti.v9i2.5608

Guo, R., Li, C.-G., Li, Y., Lin, J., & Guo, J. (2020). Density-adaptive kernel based efficient reranking approaches for person reidentification. Elsevier, 411, 91–111.

Hajar, A., Nabawi, I., Kartikawati, L., Yudana, F. R., Budi, S., & Prasetiyantara, N. (2021). Pengolahan Data Spasial-Geolocation Untuk Menghitung Jarak 2 Titik. Creative Information Technology Journal, 8(1), 32. https://doi.org/10.24076/citec.2021v8i1.265

Harto, D., & Rahmani, M. Z. (2019). Sistem Pengenalan Wajah Dengan Metode Eucliden Distance. Jurnal Elektrika Borneo, 5(2), 16–26. https://doi.org/10.35334/jeb.v5i2.1045

Kosasih, R., & Daomara, C. (2021). Pengenalan Wajah dengan Menggunakan Metode Local Binary Patterns Histograms (LBPH). Jurnal Media Informatika Budidarma, 5(4), 1258–1264. https://doi.org/10.30865/mib.v5i4.3171

Lin, C.-H., Huang, W.-J., & Wu, B.-F. (2021). Deep representation alignment network for pose-invariant face recognition. Elsevier, 464, 485–496.

Putra, R. R. C., & Juniawan, F. P. (2017). Penerapan Algoritma Fisherfaces Untuk Pengenalan Wajah Pada Sistem Kehadiran Mahasiswa Berbasis Android. Jurnal Telematika, 10(1), 132–146. https://doi.org/10.1007/s42354-018-0078-2

Putra, S. P., Fitri, I., & Ningsih, S. (2021). Absensi Pengenalan Wajah Menggunakan Menggunakan Algoritma Eigenface Berbasis Web. Journal of Applied Informatics and Computing (JAIC), 5(1), 21–27. https://doi.org/10.30871/jaic.v5i1.2711

Ramadhani, A. L., Musa, P., & Wibowo, E. P. (2018). Human Face Recognition Application Using PCA and Eigenface Approach. Proceedings of the 2nd International Conference on Informatics and Computing, ICIC 2017, 1–5. https://doi.org/10.1109/IAC.2017.8280652

Saepurohman, T., & Putro, B. E. (2019). Analisis Principal Component Analysis (PCA) Untuk Mereduksi Faktor-Faktor yang Mempengaruhi Kualitas Kulit Kikil Sapi. Seminar & Konferensi Nasional IDEC, 2008, C01.1-C01.10. https://idec.ft.uns.ac.id/prosiding2019

Sari, M. S., & Zefri, M. (2019). Pengaruh Akuntabilitas, Pengetahuan, dan Pengalaman Pegawai Negeri Sipil Beserta Kelompok Masyarakat (Pokmas) Terhadap Kualitas Pengelolaan Dana Kelurahan Di Lingkungan Kecamatan Langkapura. Jurnal Ekonomi, 21(3), 308–315. https://ejournal.borobudur.ac.id/index.php/1/article/view/608/583

Sen, Y., & Xia, M. (2018). Exponential elastic preserving projections for facial expression recognition. Elsevier, 275.

Simaremare, H., & Kurniawan, A. (2016). Perbandingan Akurasi Pengenalan Wajah Menggunakan Metode LBPH dan Eigenface Dalam Mengenali Tiga Wajah Sekaligus Secara Real-Time. Jurnal Sains, Teknologi dan Industri, 66–71.

Susim, T., & Darujati, C. (2021). Pengolahan Citra Untuk Pengenalan Wajah (Face Recognition) Menggunakan OpenCV. Jurnal Syntax Admiration, 2(3), 534–545. https://doi.org/10.46799/jsa.v2i3.202

Syuhada, F., Suta Wijaya, I. G. P., & Bimantoro, F. (2018). Pengenalan Wajah Untuk Sistem Kehadiran Menggunakan Metode Eigenface dan Euclidean Distance. Journal of Computer Science and Informatics Engineering (J-COSINE), 2(1), 64–69. https://doi.org/10.29303/jcosine.v2i1.74

Triputro, R. W., & Supardal. (2021). Responsivitas Pemerintah Kalurahan di Masa Pandemi Covid-19. Jurnal Masyarakat dan Desa, 1(1), 16–50. https://doi.org/10.47431/jmd.v1i1.126

Yona Sidratul Munti, N., & Asril Syaifuddin, D. (2020). Analisa Dampak Perkembangan Teknologi Informasi Dan Komunikasi Dalam Bidang Pendidikan. Jurnal Pendidikan Tambusai, 4(2), 1799–1805.

Zhao, Y., & Deng, W. (2022). Dual Gaussian Modeling for Deep Face Embeddings. Elsevier, 161, 74–81.

Downloads

Published

2024-08-08