Principal Component Analysis and Regional Coordinates on Face Recognition in Mobile-Based Attendance Systems
DOI:
https://doi.org/10.32493/informatika.v9i1.33362Keywords:
Presence, Face Recognition, Mobile, Principal Component Analysis, Regional CoordinatesAbstract
The pattern of attendance in the world of work after the Covid-19 outbreak that hit the world, has apparently brought quite big changes, due to the taboo on gathering and using shared media which is considered a medium for the spread of bacteria/viruses. The way out of this is to use facial recognition and collaborate with location coordinates using a mobile application that can be used on each smartphone to authenticate workers in changing the characteristics of presence data, so that the presence process cannot be represented. The method used for face recognition in this research is Principal Component Analysis (PCA) by linearly transforming eigenvalues and eigenvectors from extraction and reduction of faces captured from the mobile presence application. Based on the trials carried out, the success rate reached 78,667% for testing the functionality and strength of facial recognition.
References
Abbas, E. I., Safi, M. E., & Rijab, K. S. (2017). Face Recognition Rate Using Different Classifier Methods Based on PCA. International Conference on Current Research in Computer Science and Information Technology, ICCIT 2017, 37–40. https://doi.org/10.1109/CRCSIT.2017.7965559
Arsal, M., Wardijono, B. A., & Anggraini, D. (2020). Face Recognition Untuk Akses Pegawai Bank Menggunakan Deep Learning Dengan Metode CNN. Jurnal Nasional Teknologi dan Sistem Informasi, 06, 413–418. https://doi.org/10.1109/UBMK52708.2021.9559031
Budi, A., Suma’inna, & Maulana, H. (2016). Pengenalan Citra Wajah Sebagai Identifier Menggunakan Metode Principal Component Analysis (PCA). Jurnal Teknik Informatika, 9(2), 166–175. https://doi.org/10.15408/jti.v9i2.5608
Guo, R., Li, C.-G., Li, Y., Lin, J., & Guo, J. (2020). Density-adaptive kernel based efficient reranking approaches for person reidentification. Elsevier, 411, 91–111.
Hajar, A., Nabawi, I., Kartikawati, L., Yudana, F. R., Budi, S., & Prasetiyantara, N. (2021). Pengolahan Data Spasial-Geolocation Untuk Menghitung Jarak 2 Titik. Creative Information Technology Journal, 8(1), 32. https://doi.org/10.24076/citec.2021v8i1.265
Harto, D., & Rahmani, M. Z. (2019). Sistem Pengenalan Wajah Dengan Metode Eucliden Distance. Jurnal Elektrika Borneo, 5(2), 16–26. https://doi.org/10.35334/jeb.v5i2.1045
Kosasih, R., & Daomara, C. (2021). Pengenalan Wajah dengan Menggunakan Metode Local Binary Patterns Histograms (LBPH). Jurnal Media Informatika Budidarma, 5(4), 1258–1264. https://doi.org/10.30865/mib.v5i4.3171
Lin, C.-H., Huang, W.-J., & Wu, B.-F. (2021). Deep representation alignment network for pose-invariant face recognition. Elsevier, 464, 485–496.
Putra, R. R. C., & Juniawan, F. P. (2017). Penerapan Algoritma Fisherfaces Untuk Pengenalan Wajah Pada Sistem Kehadiran Mahasiswa Berbasis Android. Jurnal Telematika, 10(1), 132–146. https://doi.org/10.1007/s42354-018-0078-2
Putra, S. P., Fitri, I., & Ningsih, S. (2021). Absensi Pengenalan Wajah Menggunakan Menggunakan Algoritma Eigenface Berbasis Web. Journal of Applied Informatics and Computing (JAIC), 5(1), 21–27. https://doi.org/10.30871/jaic.v5i1.2711
Ramadhani, A. L., Musa, P., & Wibowo, E. P. (2018). Human Face Recognition Application Using PCA and Eigenface Approach. Proceedings of the 2nd International Conference on Informatics and Computing, ICIC 2017, 1–5. https://doi.org/10.1109/IAC.2017.8280652
Saepurohman, T., & Putro, B. E. (2019). Analisis Principal Component Analysis (PCA) Untuk Mereduksi Faktor-Faktor yang Mempengaruhi Kualitas Kulit Kikil Sapi. Seminar & Konferensi Nasional IDEC, 2008, C01.1-C01.10. https://idec.ft.uns.ac.id/prosiding2019
Sari, M. S., & Zefri, M. (2019). Pengaruh Akuntabilitas, Pengetahuan, dan Pengalaman Pegawai Negeri Sipil Beserta Kelompok Masyarakat (Pokmas) Terhadap Kualitas Pengelolaan Dana Kelurahan Di Lingkungan Kecamatan Langkapura. Jurnal Ekonomi, 21(3), 308–315. https://ejournal.borobudur.ac.id/index.php/1/article/view/608/583
Sen, Y., & Xia, M. (2018). Exponential elastic preserving projections for facial expression recognition. Elsevier, 275.
Simaremare, H., & Kurniawan, A. (2016). Perbandingan Akurasi Pengenalan Wajah Menggunakan Metode LBPH dan Eigenface Dalam Mengenali Tiga Wajah Sekaligus Secara Real-Time. Jurnal Sains, Teknologi dan Industri, 66–71.
Susim, T., & Darujati, C. (2021). Pengolahan Citra Untuk Pengenalan Wajah (Face Recognition) Menggunakan OpenCV. Jurnal Syntax Admiration, 2(3), 534–545. https://doi.org/10.46799/jsa.v2i3.202
Syuhada, F., Suta Wijaya, I. G. P., & Bimantoro, F. (2018). Pengenalan Wajah Untuk Sistem Kehadiran Menggunakan Metode Eigenface dan Euclidean Distance. Journal of Computer Science and Informatics Engineering (J-COSINE), 2(1), 64–69. https://doi.org/10.29303/jcosine.v2i1.74
Triputro, R. W., & Supardal. (2021). Responsivitas Pemerintah Kalurahan di Masa Pandemi Covid-19. Jurnal Masyarakat dan Desa, 1(1), 16–50. https://doi.org/10.47431/jmd.v1i1.126
Yona Sidratul Munti, N., & Asril Syaifuddin, D. (2020). Analisa Dampak Perkembangan Teknologi Informasi Dan Komunikasi Dalam Bidang Pendidikan. Jurnal Pendidikan Tambusai, 4(2), 1799–1805.
Zhao, Y., & Deng, W. (2022). Dual Gaussian Modeling for Deep Face Embeddings. Elsevier, 161, 74–81.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Indah Puspasari Handayani, Rizky Pradana
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Informatika Universitas Pamulang have CC-BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Informatika Universitas Pamulang recognize that free access is better than priced access, libre access is better than free access, and libre under CC-BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
Jurnal Informatika Universitas Pamulang is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
YOU ARE FREE TO:
- Share : copy and redistribute the material in any medium or format
- Adapt : remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms