Klasifikasi Status Stunting Balita Menggunakan Metode Naïve Bayes Gaussian Berbasis Web

Authors

  • Makmur Mulyono Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Elvia Budianita Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Alwis Nazir Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Fadhilah Syafria Universitas Islam Negeri Sultan Syarif Kasim Riau

DOI:

https://doi.org/10.32493/informatika.v8i3.33399

Keywords:

Toddler, Stunting, Data Mining, Classification, Naïve Bayes

Abstract

The growth and development of toddlers must get attention from parents because toddlerhood is a golden period in shaping the growth and development and intelligence of children. Stunting is  a state of malnutrition in which stunted growth and development of children and this is included in chronic nutritional problems, the incidence of stunting  can be seen from height that is not in accordance with age. In preventing toddlers from stunting, it is necessary to anticipate early prevention by conducting examinations at the nearest posyandu which is measured using anthropometric methods. The calculation  of stunting or normal status based on anthropometric data is generally processed manually so that there is a high possibility of errors in calculating and entering data. Data mining can make classifications or predictions on the stunting status  of toddlers by studying previous data patterns. Naïve bayes is one classification method that has the advantage of high accuracy with little training data as for the attributes used in this study, namely age, gender, Early Initiation of Breastfeeding (IMD), weight, height. Based on the test results, the best average accuracy was obtained on numerical data types for age, weight, height and nominal gender attributes, Early Breastfeeding Initiation (IMD) with the highest accuracy in the 80:20 data comparison, which is 80.34% with a total of 1172 data.

Author Biographies

Makmur Mulyono, Universitas Islam Negeri Sultan Syarif Kasim Riau

Teknik Informatika

Elvia Budianita, Universitas Islam Negeri Sultan Syarif Kasim Riau

Teknik Informatika

Alwis Nazir, Universitas Islam Negeri Sultan Syarif Kasim Riau

Teknik Informatika

Fadhilah Syafria, Universitas Islam Negeri Sultan Syarif Kasim Riau

Teknik Informatika

References

Arisandi, R. R. R., Warsito, B., & Hakim, A. R. (2022). Aplikasi Naïve Bayes Classifier (Nbc) Pada Klasifikasi Status Gizi Balita Stunting Dengan Pengujian K-fold Cross Validation. Jurnal Gaussian, 11(1), 130–139. https://ejournal3.undip.ac.id/index.php/gaussian/

Cahyanti, F. L. D., Sarasati, F., Astuti, W., & Firasari, E. (2023). Klasifikasi Data Mining Dengan Algoritma Machine Larning Untuk Prediksi Penyakit Liver. Technologia, 14(2), 134–139. https://doi.org/http://dx.doi.org/10.31602/tji.v14i2.10093

Dewi, S. (2019). Komparasi Metode Algoritma Data Mining pada Prediksi Uji Kelayakan Credit Approval pada Calon Nasabah Kredit Perbankan. Jurnal Khatulistiwa Informatika, 7(1), 59–65. https://doi.org/https://doi.org/10.31294/jki.v7i1.5744

Dewi, S. K., & Fuad, A. (2022). Strategi Segmenting, Targeting, dan Positioning dalam Rangka Percepatan Penurunan Stunting di Provinsi Banten. JDKP Jurnal Desentralisasi Dan Kebijakan Publik, 3(2), 398–406. https://doi.org/10.30656/jdkp.v3i2.5914

Yanti, N. D., Betriana, F., & Kartika, I. R. (2020). Faktor Penyebab Stunting Pada Anak: Tinjauan Literatur. REAL in Nursing Journal (RNJ), 3(1), 1–10. https://doi.org/http://dx.doi.org/10.32883/rnj.v3i1.447

Islam, H. I., Mulyadien, M. K., & Enri, U. (2022). Penerapan Algoritma C4.5 dalam Klasifikasi Status Gizi Balita. Jurnal Ilmiah Wahana Pendidikan, 8(10), 116–125. https://doi.org/10.5281/zenodo.6791722

Nugroho, M. R., Sasongko, R. N., & Kristiawan, M. (2021). Faktor-faktor yang Mempengaruhi Kejadian Stunting Pada Anak Usia Dini di Indonesia. Jurnal Obsesi: Jurnal Pendidikan Anak Usia Dini, 5(2), 2269–2276. https://doi.org/10.31004/obsesi.v5i2.1169

Putro, H. F., Vulandari, R. T., & Saptomo, W. L. Y. (2020). Penerapan Metode Naive Bayes Untuk Klasifikasi Pelanggan. Jurnal Teknologi Informasi Dan Komunikasi (TIKomSiN), 8(2), 19–24. https://doi.org/10.30646/tikomsin.v8i2.500

Rachmad, D. U. M., Oktavianto, H., & Rahman, M. (2022). Perbandingan Metode K-Nearest Neighbor Dan Gaussian Naive Bayes Untuk Klasifikasi Penyakit Stroke. Jurnal Smart Teknologi, 3(4), 405–412.

Rahmadhita, K. (2020). Permasalahan Stunting dan Pencegahannya Stunting Problems and Prevention. Jurnal Ilmiah Kesehatan Sandi Husada, 11(1), 225–229. https://doi.org/10.35816/jiskh.v10i2.253

Ruswati, Leksono, A. W., Prameswary, D. K., Pembajeng, G. S., Inayah, Felix, J., Dini, M. S. A., Rahmadina, N., Hadayna, S., Aprilia, T. R., Hermawati, E., & Ashanty. (2021). Risiko Penyebab Kejadian Stunting pada Anak. Jurnal Pengabdian Kesehatan Masyarakat: Pengmaskesmas, 1(2), 34–38. https://doi.org/10.31849/pengmaskesmas.v1i2/5747

Setiawan, R., & Triayudi, A. (2022). Klasifikasi Status Gizi Balita Menggunakan Naïve Bayes dan K-Nearest Neighbor Berbasis Web. JURNAL MEDIA INFORMATIKA BUDIDARMA, 6(2), 777–785. https://doi.org/10.30865/mib.v6i2.3566

Titimeidara, M. Y., & Hadikurniawati, W. (2021). Implementasi Metode Naive Bayes Classifier Untuk Klasifikasi Status Gizi Stunting Pada Balita. Jurnal Ilmiah Informatika (JITF), 9(1), 54–59. https://doi.org/https://doi.org/10.33884/jif.v9i01

World Health Organization. (2014, December 20). Global nutrition targets 2025: policy brief series. World Health Organization. https://www.who.int/publications/i/item/WHO-NMH-NHD-14.2

World Health Organization. (2015, September 19). Stunting in a nutshell. World Health Organization. https://www.who.int/news/item/19-11-2015-stunting-in-a-nutshell

World Health Organization. (2022). Stunting prevalence among children under 5 years of age (%) (model-based estimates). World Health Organization. https://www.who.int/data/gho/data/indicators/indicator-details/GHO/gho-jme-stunting-prevalence

Downloads

Published

2023-09-30