Optimasi Decision Tree Menggunakan Teknik Boosting pada Prediksi Penyakit Diabetes

Authors

DOI:

https://doi.org/10.32493/informatika.v8i3.35226

Keywords:

diabetes, expert system, decision tree, boosting

Abstract

Early detection of diabetes is very important to reduce the consequences caused by the disease. Diabetes is influenced by many factors, so to make a diagnosis requires a complex analysis. The dataset used to analyze the prediction of diabetes is using machine learning algorithm. The machine learning algorithm is used to classify someone with diabetes or not based on the factors that have been set as input. The results of the diagnosis/prediction that are not perfect are caused by many misclassifications. To reduce classification errors, it is proposed to apply decision tree and boosting techniques. The classification algorithm used in this study is Random Forest. The experimental results show that decision tree and boosting techniques and a combination of the two can reduce misclassification in diabetes prediction.

References

Drummond, A., & Resende, P. (2018). A survey of random forest based methods for intrusion detection systems. ACM Computing Surveys, 51.

Fatimah, R. (2015). Diabetes Melitus Tipe 2. juke.kedokteran.unila, IV, 1.

International Diabetes Federation. (2020). Naik 6,2 Persen Selama Pandemi Pasien Diabetes Indonesia Peringkat 7 di Dunia. Jakarta: Kompas.Com.

Kemenkes. (2019). Tanda dan Gejala Diabetes. Direktorat Pencegahan dan Pengendalian Penyakit Tidak Menular, 1-3.

Lefebvre-Ulrikson, W., Da Costa, G., Rigutti, L., & Blum, I. (2016). Data Mining. In Atom Probe Tomography: Put Theory Into Practice, 1.

Megawat, F., Agustini, N., & Krismayanti, N. (2020). Studi Retrospektif Terapi Antidiabetik pada Penderita Diabetes Melitus Rawat Inap di Rumah Sakit Umum Ari Canti. Jurnal Ilmiah Medicamento, VI (1), 28-32.

Mujumdar, A., & Vaidehi, V. (2019). Diabetes Prediction using Machine Learning Algorithms. International Conference on Recent Trends in Advanced Computing, 292-299.

Safitri, & Nurhayati. (2019). Pengaruh Pemberian Sari Pati Bengkuang Terhadap Kadar Glukosa Darah Pada Penderita Diabetes Mellitus Tipe 2. Jurnal Ners, 1.

Vani, Kumari, Priya, & Harika. (2015). An Effective Language for Object Oriented Design-UML (Unified Modeling Language). Int. Resesrch J. Eng. Technol, II(5), 1212-1218.

Wei, G., Zhao, J., Feng, Y., Li, G., & Sun, X. (2018, October). An Effective Gas Sensor Array Optimization Method Base on Random Forest. Proceedings of IEEE Sensors , 1-4.

Wicaksono, A. (2015). Pengaruh pemberian ekstrak jahe merah (zingiber officinale) terhadap kadar glukosa darah puasa dan postprandial pada tikus diabetes. Jurnal Majority, IV (7), 97-102.

Downloads

Published

2023-09-30