Application of the K-Nearest Neighbor (KNN) Algorithm for Stunting Diagnosis in Infants Aged 1-12 Months

Authors

  • Moh abdul kholik Universitas Surakarta
  • Cucut Hariz Pratomo Universitas Muhammadiyah Karanganyar
  • Sapriani Gustina Universitas Proklamasi 45

DOI:

https://doi.org/10.32493/informatika.v9i2.40983

Keywords:

Diagnose, Artificial intelligence, Detection, K-Nearest Neighbor (KNN), Stunting, Machine Learning

Abstract

Stunting in toddlers must be addressed immediately because it has a negative impact on their growth and development. Stunting is a disorder where toddlers experience chronic malnutrition, thus their physical growth and height do not match their age. According to the Indonesian Nutritional Status Survey (SSGI), stunting is more common among toddlers from aged 0 to 1 year than overall. Stunting can have short-term and long-term impacts. This research examines data from the Temanggung District Health Service on 3,999 toddlers aged 0 to 12 months between 2019 and 2022.  Many studies have exclusively looked at stunting in children aged one to five years, especially research on stunting using the KNN method, even though stunting can actually be recognized from an early age. Therefore, researchers are more specific in using the KNN method for cases of babies 1 to 12 months so as to differentiate it from previous researchers. The aim of this research is to use the K-Nearest Neighbor (KNN) algorithm to detect stunting nutritional status in toddlers. K-Nearest Neighbor (KNN) is a classification algorithm that uses a set of K values ​​from the closest data (its neighbors) as a reference to determine the class of incoming data. KNN classifies data based on its similarity or closeness to other data. The dataset used includes parameters of age, gender and height. The research approach is the CRISP-DM (Cross Industry Standard Process for Data Mining) method, which begins with business knowledge, followed by EDA and modeling, evaluation, testing and report preparation. The result shows that the KNN algorithm can accurately categorize children as stunted or not based on age (U) and height (TB), with the maximum level of accuracy and the lowest error rate at k = 5. At this optimal value (k), this algorithm has an accuracy of 99.87%, Recall 99.84%, and precision 99.73.

References

Amir, Y., Hasneli, Y., & Erika. (2020). Hubungan Pemberian ASI Eksklusif Terhadap Tumbuh Kembang Bayi. Jurnal Ners Indonesia, Vol. 1(No. 1), 90–98.

Anggraeni, D. P., & Syafrullah, H. (2023). Sistem Pakar Diagnosa Gejala Malnutrisi pada Balita Menggunakan Metode Certainty Factor. Jurnal Informasi Dan Teknologi, 5(4), 67–72. https://doi.org/10.60083/jidt.v5i4.419

Batista, A. F. de M., Miraglia, J. L., Donato, T. H. R., & Filho, A. D. P. C. (2021). Predicting mortality risk in patients with COVID-19 using machine learning. Smart Health, 20(November 2020), 100178. https://doi.org/10.1016/j.smhl.2020.100178

BPS. (2022). Laporan Indeks Khusus Penanganan Stunting 2019-2020. Badan Pusat Statistik, 1–63. https://www.bps.go.id/publication/2021/09/08/3b622d713a80363685aef508/laporan-indeks-khusus-penanganan-stunting-2019-2020.html

Drajana, I. C. R., & Bode, A. (2022). Prediksi Status Penderita Stunting Pada Balita Provinsi Gorontalo Menggunakan K-Nearest Neighbor Berbasis Seleksi Fitur Chi Square. Jurnal Nasional Komputasi Dan Teknologi Informasi (JNKTI), 5(2), 309–316. https://doi.org/10.32672/jnkti.v5i2.4205

Galler, J. R., Bringas-Vega, M. L., Tang, Q., Rabinowitz, A. G., Musa, K. I., Chai, W. J., Omar, H., Abdul Rahman, M. R., Abd Hamid, A. I., Abdullah, J. M., & Valdés-Sosa, P. A. (2021). Neurodevelopmental effects of childhood malnutrition: A neuroimaging perspective. NeuroImage, 231, 117828. https://doi.org/https://doi.org/10.1016/j.neuroimage.2021.117828

Irfiani, E., & Rani, S. S. (2018). Algoritma K-Means Clustering untuk Menentukan Nilai Gizi Balita. Jurnal Sistem Dan Teknologi Informasi (JUSTIN), 6(4), 161. https://doi.org/10.26418/justin.v6i4.29024

Kaesmitan, Y., & Johannis, J. (2017). KLASIFIKASI STATUS GIZI BALITA DI KELURAHAN OESAPA BARAT MENGGUNAKAN METODE K-NEAREST NEIGBOR. MULTITEK INDONESIA, 11, 42. https://doi.org/10.24269/mtkind.v11i1.506

Lukito, D. A., & Setyaningsih, A. (2023). Hubungan Pemberian Asi Eksklusif Dan Ketepatan Pemberian Mp-Asi Terhadap Kejadian Stunting Pada Balita Usia 6-23 Bulan Di Kecamatan Bansari Kabupaten Temanggung. Jurnal Gizi Dan Dietetik, 2(2), 91–99. https://doi.org/10.34011/jgd.v2i2.1804

Mukhlis, I., Pipin, S., Judijanto, L., Reba, F., Mandowen, S., Al-Husaini, M., & Laili, N. (2024). ALGORITMA PEMBELAJARAN MESIN (Dasar, Teknik, dan Aplikasi).

Murti, F. C., Suryati, S., & Oktavianto, E. (2020). Hubungan Berat Badan Lahir Rendah (Bblr)Dengan Kejadian Stunting Pada Balita Usia 2-5 Tahun Di Desa Umbulrejo Kecamatan Ponjong Kabupaten Gunung Kidul. Jurnal Ilmiah Kesehatan Keperawatan, 16(2), 52. https://doi.org/10.26753/jikk.v16i2.419

Mustika, W., & Syamsul, D. (2018). Analisis Permasalahan Status Gizi Kurang Pada Balita di Puskesmas Teupah Selatan Kabupaten Simeuleu. Jurnal Kesehatan Global, 1(3), 127. https://doi.org/10.33085/jkg.v1i3.3952

Nugraha, S. D., Putri, R. R. M., & Wihandika, R. C. (2017). Penerapan Fuzzy K-Nearest Neighbor ( FK-NN ) Dalam Menentukan Status Gizi Balita. ” J. Pengemb. Teknol. Inf. Dan Ilmu Komputer, 1(9), 925–932.

Pantaleon, M. G., Hadi, H., & Gamayanti, I. L. (2016). Stunting berhubungan dengan perkembangan motorik anak di Kecamatan Sedayu, Bantul, Yogyakarta. Jurnal Gizi Dan Dietetik Indonesia (Indonesian Journal of Nutrition and Dietetics), 3(1), 10. https://doi.org/10.21927/ijnd.2015.3(1).10-21

Pratama, F., & Damayanti, D. (2023). Implementasi MOORA untuk Seleksi Awal Pemenang Jakarta Tourism Award 2022. Jurnal Informatika Universitas Pamulang, 8(4), 600–610.

Priyono. (2020). Strategi Percepatan Penurunan Stunting Perdesaan (Studi Kasus Pendampingan Aksi Cegah Stunting di Desa Banyumundu, Kabupaten Pandeglang). Jurnal Good Governance, 16(2), 149–174. https://doi.org/10.32834/gg.v16i2.198

Purwati, N., & Sulistyo, G. B. (2023). Stunting Early Warning Application Using KNN Machine Learning Method. Jurnal Riset Informatika, 5(3), 373–378. https://doi.org/10.34288/jri.v5i3.550

Rahayu, A., Yulidasari, F., Putri, A. O., & Anggraini, L. (2018). Stunting dan Upaya Pencegahannya. In Buku stunting dan upaya pencegahannya.

Ramadhan, K. (2019). Status Gizi menurut Tinggi Badan per Umur pada Balita. Poltekita : Jurnal Ilmu Kesehatan, 13(2), 96–101. https://doi.org/10.33860/jik.v13i2.38

Romadloni, P., Adhi Kusuma, B., & Maulana Baihaqi, W. (2022). Komparasi Metode Pembelajaran Mesin Untuk Implementasi Pengambilan Keputusan Dalam Menentukan Promosi Jabatan Karyawan. JATI (Jurnal Mahasiswa Teknik Informatika), 6(2), 622–628. https://doi.org/10.36040/jati.v6i2.5238

Ruaida, N., & Soumokil, O. (2018). HUBUNGAN STATUS KEK IBU HAMIL DAN BBLR DENGAN KEJADIAN STUNTING PADA BALITA DI PUSKESMAS TAWIRI KOTA AMBON. Jurnal Kesehatan Terpadu (Integrated Health Journal), 9(2), 45–51.

Saeful Bachri, O., & Herdian Bhakti, R. M. (2021). Penentuan Status Stunting pada Anak dengan Menggunakan Algoritma KNN. Jurnal Ilmiah Intech : Information Technology Journal of UMUS, 3(02 SE-Articles), 130–137. https://doi.org/10.46772/intech.v3i02.533

Salsabila, Martha, S., & Andani, W. (2024). Komparasi Algoritma K-Nearest Neighbor Dengan Euclidean Distance Dan Manhattan Distance Untuk Klasifikasi Stunting Balita. Buletin Ilmiah Math. Stat. Dan Terapannya (Bimaster), 13(2), 285–292.

Sumarlin, S. (2015). Implementasi Algoritma K-Nearest Neighbor Sebagai Pendukung Keputusan Klasifikasi Penerima Beasiswa PPA dan BBM. Jurnal Sistem Informasi Bisnis, 5(1), 52–62. https://doi.org/10.21456/vol5iss1pp52-62

Wati, E. F., & Sudrajat, B. (2022). Application of Naive Bayes Method For Diagnosis of Pregnancy Disease. International Journal of Information System & Technology, 6(1), 93–100.

Downloads

Published

2024-07-30