Implementasi Sistem Deteksi Anomali Berbasis Jaringan Menggunakan CNN dan SVM untuk Klasifikasikan Data Secara Real-time

Authors

  • arief luqman hadiyani UNIVERSITAS MUHAMMADIYAH SURAKARTA
  • Bana Handaga Universitas Muhammadiyah Surakarta

DOI:

https://doi.org/10.32493/jiup.v10i2.52163

Keywords:

Network Anomaly Detection, Computer Network, CNN–SVM, NSL-KDD

Abstract

The growing volume and complexity of network traffic have created new challenges in maintaining information security. Conventional signature-based intrusion detection systems are inadequate against modern threats, especially zero-day attacks that remain undocumented. Anomaly-based approaches using classical machine learning methods such as Support Vector Machine (SVM) show promise but still rely on manual feature engineering, which is time-consuming and requires expertise. This study proposes an anomaly detection system combining the automatic feature extraction capability of Convolutional Neural Network (CNN) with the strong classification performance of SVM. The NSL-KDD dataset is used for training, while real-time testing data are captured using Scapy. The system updates its analysis every five minutes, and detection results are presented as graphical reports and log tables sent to administrators via a Telegram Bot. Experimental results show that the hybrid CNN–SVM model achieves high accuracy and stable performance in real-time scenarios, contributing to more adaptive and intelligent intrusion detection.

References

Al Ghamdi, M. A. (2023). A Fine-Grained System Driven of Attacks over Several New Representation Techniques Using Machine Learning. IEEE Access, 11(July), 96615–96625. https://doi.org/10.1109/ACCESS.2023.3307018

Alrayes, F. S., Zakariah, M., Amin, S. U., Khan, Z. I., & Alqurni, J. S. (2024). CNN Channel Attention Intrusion Detection System Using NSL-KDD Dataset. Computers, Materials and Continua, 79(3), 4319–4347. https://doi.org/10.32604/cmc.2024.050586

Altunay, H. C., & Albayrak, Z. (2023). A hybrid CNN + LSTMbased intrusion detection system for industrial IoT networks. Engineering Science and Technology, an International Journal, 38, 101322. https://doi.org/10.1016/j.jestch.2022.101322

Berhane, T., Melese, T., Walelign, A., & Mohammed, A. (2023). A Hybrid Convolutional Neural Network and Support Vector Machine‐Based Credit Card Fraud Detection Model. Mathematical Problems in Engineering, 2023(1). https://doi.org/10.1155/2023/8134627

Choi, Y., Choi, H., & Seo, S. C. (2023). AVX512Crypto: Parallel Implementations of Korean Block Ciphers Using AVX-512. IEEE Access, 11(May), 55094–55106. https://doi.org/10.1109/ACCESS.2023.3278993

Firdaus, D., Fahira, F., & Rianti, R. (2023). Deteksi Anomali Dan Serangan Low Rate Ddos Dalam Lalu Lintas Jaringan Menggunakan Naive Bayes. Naratif : Jurnal Nasional Riset, Aplikasi Dan Teknik Informatika, 5(2), 140–148. https://doi.org/10.53580/naratif.v5i2.208

Irfan, A., Nusri, A. Z., Rachmat, Z., & Wulandari, S. (2024). Analisis Keamanan Jaringan Nirkabel Menggunakan Wireless Intrusion Detection System (WIDS). Jurnal Ilmiah Sistem Informasi Dan Teknik Informatika (JISTI), 7(1), 110–119. https://doi.org/10.57093/jisti.v7i1.195

Jagtap, S. S., Shankar Sriram, V. S., & Subramaniyaswamy, V. (2021). A hypergraph based Kohonen map for detecting intrusions over cyber–physical systems traffic. Future Generation Computer Systems, 119, 84–109. https://doi.org/10.1016/j.future.2021.02.001

Januantoro, A., Scanning, P., Scanning, P., & Force, B. (2025). Deteksi Serangan Jaringan Komputer Berbasis Snort Dengan, 8(1), 100–105.

Khraisat, A., Gondal, I., Vamplew, P., Kamruzzaman, J., & Alazab, A. (2019). A novel ensemble of hybrid intrusion detection system for detecting internet of things attacks. Electronics (Switzerland), 8(11). https://doi.org/10.3390/electronics8111210

Lateef, A. A. A., Al-Janabi, S. T. F., & Al-Khateeb, B. (2019). Survey on intrusion detection systems based on deep learning. Periodicals of Engineering and Natural Sciences, 7(3), 1074–1095. https://doi.org/10.21533/pen.v7i3.635

Liu, H., & Wang, H. (2023). Real-time Anomaly Detection of Network Traffic Based on CNN. Symmetry, 15(6). https://doi.org/10.3390/sym15061205

Ma, Q., Sun, C., Cui, B., & Jin, X. (2021). A novel model for anomaly detection in network traffic based on kernel Support Vector Machine. Computers and Security, 104, 102215. https://doi.org/10.1016/j.cose.2021.102215

Ngurah, I. G., Dika, M., Agung, I. G., & Arya, G. (2025). Klasifikasi Serangan Distributed Denial of Service ( DDoS ) Mempergunakan Support Vector Machine dengan Correlation- Based Feature Selection, 13(3), 543–558.

Ogah, M. D., Essien, J., Ogharandukun, M., & Abdullahi, M. (2024). Machine Learning Models for Heterogenous Network Security Anomaly Detection. Journal of Computer and Communications, 12(06), 38–58. https://doi.org/10.4236/jcc.2024.126004

Ozkan-Okay, M., Samet, R., Aslan, O., & Gupta, D. (2021). A Comprehensive Systematic Literature Review on Intrusion Detection Systems. IEEE Access, 9, 157727–157760. https://doi.org/10.1109/ACCESS.2021.3129336

S, D. S., Wahyuddin, W., Kautsar, A., & Setyawan, A. (2025). Intrusion Detection System Menggunakan Snort dan Telegram Sebagai Media Notifikasi. SisInfo, 7(1), 40–49. https://doi.org/10.37278/sisinfo.v7i1.1068

Sajid, M., Malik, K. R., Almogren, A., Malik, T. S., Khan, A. H., Tanveer, J., & Rehman, A. U. (2024). Enhancing intrusion detection: a hybrid machine and deep learning approach. Journal of Cloud Computing, 13(1). https://doi.org/10.1186/s13677-024-00685-x

Shaukat, K., Luo, S., Varadharajan, V., Hameed, I. A., & Xu, M. (2020). A Survey on Machine Learning Techniques for Cyber Security in the Last Decade. IEEE Access, 8(November), 222310–222354. https://doi.org/10.1109/ACCESS.2020.3041951

Sinha, M., Bera, P., & Satpathy, M. (2025). SYN-Monitor: An Energy Efficient Defense System against TCP-SYN Flooding Attacks in SDN. ICDCN 2025 - Proceedings of the 26th International Conference on Distributed Computing and Networking, 346–351. https://doi.org/10.1145/3700838.3703695

Downloads

Published

2025-06-30