Analisis Pola Pelanggaran Tata Tertib siswa untuk Meminimalisir Kasus Pelanggaran dengan Algoritma FP-Growth

Authors

  • Eka Firmansyah Universitas Muhammadiyah Surakarta
  • Dedi Gunawan Universitas Muhammadiyah Surakarta

DOI:

https://doi.org/10.32493/jiup.v10i2.52258

Keywords:

Fp-Growth, student violations, association rule mining, support-confidence, recurrence prevention

Abstract

This research is motivated by the number of transactions in the last five years (2019–2023), 80% of students have a level of discipline violation, indicating the need for more strategic discipline. This study aims to analyze the systemic relationship between various types of participants to identify the causes of the problem. The method used in data mining is the FP-Growth algorithm, which is applied to 1,500 historical data points with a minimum support of 0.1 and a confidence level of 0.7. The analysis results show 15 significant pattern associations, with the strongest correlation between "Late → Not doing assignments" (confidence 0.83) and "Truancy → Smoking in school areas" (confidence 0.75, lift 2.5). This forms the basis for data-driven intervention recommendations, such as the implementation of the "Morning Check-in" program and the implementation of supervision in vulnerable areas, which will provide practical support to improve the effectiveness of school discipline management across schools.

References

Alsuwaiket, M. A., Blasi, A. H., & Altarawneh, K. (2020). Refining Student Marks based on Enrolled Modules Assessment Methods using Data Mining Techniques. Technology & Applied Science Research, 10(1), 5205–5010. https://arxiv.org/abs/2009.06381v1

Anwar, B., Ambiyar, A., penelitian, F. F.-S. jurnal dan, & 2023, undefined. (2023). Application of the FP-Growth Method to Determine Drug Sales Patterns. Jurnal.Polgan.Ac.Id, 7(1). https://doi.org/10.33395/sinkron.v8i1.12004

Aydoğan, Ş. K., Pura, T., & Bİngül, F. (2024). Predicting Students ’ Academic Performances Using Machine Learning Algorithms in Educational Data Mining. 12(4).

Bhardwaj, V., Anooja, A., Vermani, L. S., Sunita, & Dhaliwal, B. K. (2024). Smart cities and the IoT: an in-depth analysis of global research trends and future directions. Discover Internet of Things, 4(1). https://doi.org/10.1007/s43926-024-00076-3

Brown, C., Sanci, L., Behavior, K. H.-C. in H., & 2021, undefined. (n.d.). Technology-facilitated abuse in relationships: Victimisation patterns and impact in young people. Elsevier. Retrieved May 1, 2025, from https://www.sciencedirect.com/science/article/pii/S074756322100220X

Fournier-Viger, P., Yang, P., Kiran, R. U., Ventura, S., & Luna, J. M. (2021). Mining local periodic patterns in a discrete sequence. Information Sciences, 544, 519–548. https://doi.org/10.1016/j.ins.2020.09.044

Hu, R., & Yang, X. (2025). Enhancing Medical Big Data Analytics: A Hadoop and FP-Growth Algorithm Approach for Cloud Computing. Tehnicki Vjesnik, 32(1), 247–254. https://doi.org/10.17559/TV-20240129001302

Junika Putra, D., Devegi, M., Teknik Informatika, E., & Teknik Kuantan Singingi, F. (2023). Student Identification Based on Patterns of Association For Student Misbehaviour Using Frequent Pattern Growth Algorithms. Ejournal.Uniks.Ac.IdE Erlinda, DJ Putra, M DevegiJurnal Teknologi Dan Open Source, 2023•ejournal.Uniks.Ac.Id, 6(1), 142–150. https://doi.org/10.36378/jtos.v6i1.3071

Li, J. W., Yu, N., Jiang, J. W., Li, X., Ma, Y., & Chen, W. D. (2020). RESEARCH on STUDENT BEHAVIOR INFERENCE METHOD BASED on FP-GROWTH ALGORITHM. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(3/W10), 981–985. https://doi.org/10.5194/isprs-archives-XLII-3-W10-981-2020

Li, S., Smith, P., … P. D.-I. T., & 2020, undefined. (n.d.). Massive MIMO asymptotics for ray-based propagation channels. Ieeexplore.Ieee.Org. Retrieved May 1, 2025, from https://ieeexplore.ieee.org/abstract/document/9036073/

Li, Y., Zhang, Y., Timofte, R., Van Gool, L., Yu, L., Li, Y., Li, X., Jiang, T., Wu, Q., Han, M., Lin, W., Jiang, C., Luo, J., Fan, H., Liu, S., Wang, Y., Cai, M., Li, M., Zhang, Y., … Wang, X. (2023). NTIRE 2023 Challenge on Efficient Super-Resolution: Methods and Results (pp. 1922–1960). https://cvlai.net/ntire/2023/.

Lin, Y., Lin, F., Huang, D., Conference, X. F.-J. of P., & 2021, undefined. (n.d.). Voltage sag severity analysis based on improved FP-Growth algorithm and AHP algorithm. Iopscience.Iop.Org. https://doi.org/10.1088/1742-6596/1732/1/012088/META

Lotfi, F. Z. (2025). When AI enters Moroccan primary schools : what uses , challenges , and prospects for tomorrow ’ s education ? 3(1), 148–158.

Member, S. (2012). EDM-27: Educational Data Mining: A Review of the State-of-the-Art. Spain, XX(X), 1–19.

Orman, R., Cağıltay, N. E., & Cakır, H. (2025). Analysis of Mooc Data With Educational Data Mining: Systematic Literature Review. El-Cezeri Journal of Science and Engineering, 12(2), 191–204. https://doi.org/10.31202/ecjse.1581942

Pan, H., International, R. L.-M. of E. Q. A., & 2024, undefined. (2024). Mining research on correlation factors of residential electricity stability based on improved FP-growth algorithm. Emerald.Com, 35(3), 547–566. https://doi.org/10.1108/MEQ-05-2023-0142/FULL/HTML

Paral, P., Ghosh, S., Pal, S. K., & Chatterjee, A. (2024). Adaptive Non-Homogeneous Granulation-Aided Density-Based Deep Feature Clustering for Far Infrared Sign Language Images. IEEE Transactions on Emerging Topics in Computational Intelligence, PP, 1–12. https://doi.org/10.1109/TETCI.2024.3510292

Vo, T. S., Hoang, T., Vo, T. T. B. C., Jeon, B., Nguyen, V. H., & Kim, K. (2024). Recent Trends of Bioanalytical Sensors with Smart Health Monitoring Systems: From Materials to Applications. Advanced Healthcare Materials, 13(17), 1–33. https://doi.org/10.1002/adhm.202303923

Wadanur, A., Inform, A. S.-E. J. P., & 2022, undefined. (2022). Implementasi Algoritma Apriori dan FP-Growth pada Penjualan Spareparts. Scholar.Archive.Org, 6(1), 107–115. https://doi.org/10.29408/edumatic.v6i1.5470

Zhang, J., Sun, H., Sun, Z., Dong, W., Access, Y. D.-I., & 2020, undefined. (n.d.). Reliability assessment of wind power converter considering SCADA multistate parameters prediction using FP-growth, WPT, K-means and LSTM network. Ieeexplore.Ieee.Org. Retrieved May 1, 2025, from https://ieeexplore.ieee.org/abstract/document/9085359/

Zheng, X., Yuan, S., Liu, J., Yin, J., Yuan, F., Shen, W. S., Yao, K., Wei, M., Zhou, C., Song, K., Zhang, B. Bin, Lin, Y., Hedhili, M. N., Wehbe, N., Han, Y., Sun, H. T., Lu, Z. H., Anthopoulos, T. D., Mohammed, O. F., … Bakr, O. M. (2020). Chlorine vacancy passivation in mixed halide perovskite quantum dots by organic pseudohalides enables efficient Rec. 2020 blue light-emitting diodes. ACS Publications, 5(3), 793–798. https://doi.org/10.1021/ACSENERGYLETT.0C00057

Downloads

Published

2025-06-30