Analisis Optimasi Algoritma Klasifikasi Support Vector Machine, Decision Trees, dan Neural Network Menggunakan Adaboost dan Bagging

Authors

DOI:

https://doi.org/10.32493/informatika.v5i3.6609

Keywords:

Data Mining, Clasification, AdaBoost, Bagging, Support Vector Machine, Decision Trees, Neural Network

Abstract

The accuracy value of a classification algorithm shows whether the algorithm is good or not in classifying data which can affect the results of the classification method in data mining processing. In this study, the author will analyze the effect of optimization using the adaboost and bagging methods on the results of the classification algorithm accuracy value on support vector machines, decision trees, and neural networks. This study uses a software in data mining processing that is using the Weka application version 3.8.1. The test method used was a percentage split of 70%. In this study, the results show that adaboost optimization can increase the accuracy value of the support vector machine algorithm from 88.93% to 89.10%, decision trees from 90.24% to 90.36%, and neural network from 88.53% to 88.61%, while bagging optimization can only increase Algortima decision trees become 90.55%, and the neural network becomes 90.38%, because the accuracy value of the support vector machine algorithm is the same as the accuracy value of bagging, which is 88.93%.

Author Biography

Agus Heri Yunial, Pamulang University

Dosen Teknik Informatika Unpam

References

Amalia, H. (2016). Komparasi Metode Data Mining Untuk Prediksi Pemasaran Bank Secara Langsung. Seminar Nasional Ilmu Pengetahuan dan Teknologi Komputer Nusa Mandiri, 1-6.

Apampa, O. (2016). Evaluation Of Classification And Ensemble Algorithms For Bank Customer Marketing Response Prediction. Journal of International Technology and Information Management, 85-100.

Bisri, A., & Wahono, R. S. (2015). Penerapan Adaboost Untuk Penyelesaian Ketidakseimbangan Kelas Pada Penentuan Kelulusan Mahasiswa Dengan Metode Decision Tree. Journal Of Intelligent Systems, 27-32.

Dušanka, D., Darko, S., Srdjan, S., Marko, A., & Teodora, L. (2017). A Comparison of Contemporary Data Mining Tools. XVII International Scientific Conference on Industrial Systems, 150-155.

Fernanda, J. W., & Otok, B. W. (2012). Boosting Neural Network Dan Boosting Cart Pada Klasifikasi Diabetes Militus Tipe II. Jurnal Matematika, 33-49.

Ilham, A. (20017). Komparasi Algoritma Klasifikasi Dengan Pendekatan Level Data Untuk Menangani Data Kelas Tidak Seimbang. Jurnal Ilmiah Ilmu Komputer, 1-6.

Keles, A., & Keles, A. (2015). IBMMS Decision Support Tool For Management Of Bank Telemarketing Campaigns. International Journal of Database Management Systems, 1-15.

Kotsiantis, S. B., & Pintelas, P. E. (2004). Combining Bagging and Boosting. International Journal Of Computational Intelligence, 324-333.

Kurniawan, D., & Supriyanto, C. (2013). Optimasi Algoritma Support Vector Machine (Svm) Menggunakan Adaboost Untuk Penilaian Risiko Kredit. Jurnal Teknologi Informasi, 38-49.

Li, X., Wang, L., & Sung, E. (2008). AdaBoost with SVM-based component classifiers. Engineering Applications of Artificial Intelligence, 785-795.

Listiana, E., & Muslim, M. A. (2017). Penerapan Adaboost Untuk Klasifikasi Support Vector Machine Guna Meningkatkan Akurasi Pada Diagnosa Chronic Kidney Disease. Prosiding Snatif Ke -4 (pp. 875-881). Kudus: Universitas Muria Kudus.

Nurdiyah, D., & Muwakhid , I. A. (2016). Perbandingan Support Vector Machine Dan K-Nearest Neighbor Untuk Klasifikasi Telur Fertil Dan Infertil Berdasarkan Analisis Texture GLCM. Jurnal Transformatika, 29-34.

Prasetio, R. T., & Pratiwi. (2015). Penerapan Teknik Bagging Pada Algoritma Klasifikasi Untuk Mengatasi Ketidakseimbangan Kelas Dataset Medis. Jurnal Informatika, 395-403.

Probo, R. D., Irawan, B., & M, R. R. (2016). Analisis Dan Implementasi Perbandingan Algoritma KNN (K Nearest Neighbor) Dengan SVM (Support Vector Machine) Untuk Prediksi Penawaran Produk. E-Proceeding Of Engineering (pp. 4988-4995). Universitas Telkom.

Sani, K., Winarno, W. W., & Fauziati, S. (2016). Analisis Perbandingan Algoritma Classification Untuk Authentication Uang Kertas. Jurnal Informatika, 1130-1139.

Sartika, D., & Sensuse, D. I. (2017). Perbandingan Algoritma Klasifikasi Naive Bayes, Nearest Neighbour, dan Decision Tree pada Studi Kasus Pengambilan Keputusan Pemilihan Pola Pakaian. JATISI, 151-161.

Sharma, N., Kaur, A., Gandotra, S., & Sharma, B. (2015). Evaluation and Comparison of Data Mining Techniques Over Bank Direct Marketing. International Journal of Innovative Research in Science, Engineering and Technology, 7141-7147.

Suwondo, A., Asmarajati, D., & Surahman, H. (2013). Algoritma C4.5 Berbasis Adaboost Untuk Prediksi Penyakit Jantung Korone. Prosiding Seminar Nasional Teknologi Dan Teknopreneur (SNTT) (pp. 1-11). Wonosobo: Fastikom UNSIQ Wonosobo.

Verbeke, W., Dejaeger, K., Martens, D., Hur, J., & Baesens, B. (2012). New Insights into Churn Prediction in the Telecommunication Sector: A Profit Driven Data Mining Approach. European Journal of Operational Research, 218(1), 211-229. doi:10.1016/j.ejor.2011.09.031

Wahbeh, A. H., Al-Radaideh, Q. A., Al-Kabi, M. N., & Al-Shawakfa, E. M. (2008). A Comparison Study between Data Mining Tools over some Classification Methods. International Journal of Advanced Computer Science and Applications, Special Issue on Artificial Intelligence, 18-26.

Wimmer, H., & Powell, L. M. (2015). A Comparison of Open Source Tools for Data Science. Proceedings of the Conference on Information Systems Applied Research (pp. 1-9). Wilmington: Information Systems & Computing Academic Professionals.

Wisaeng, K. (2013). A Comparison of Different Classification Techniques for Bank Direct Marketing. International Journal of Soft Computing and Engineering, 116-119.

Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining: Practical Machine Learning Tools and Techniques (3rd ed.). Burlington: Morgan Kaufmann.

Yap, B. W., Rani, K. A., Rahman, H. A., Fong, S., Khairudin, Z., & Abdullah, N. N. (2014). An Application of Oversampling, Undersampling, Bagging and Boosting in Handling Imbalanced Datasets. Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013). 285, pp. 13-22. Singapore: Springer. doi:10.1007/978-981-4585-18-7_2

Downloads

Published

2020-09-30