Implementasi Deep Learning Menggunakan Metode CNN dan LSTM untuk Menentukan Berita Palsu dalam Bahasa Indonesia

Authors

  • Antonius Angga Kurniawan Universitas Gunadarma
  • Metty Mustikasari Universitas Gunadarma

DOI:

https://doi.org/10.32493/informatika.v5i4.6760

Keywords:

Fake News, Indonesian Language, Deep Learning, CNN, LSTM

Abstract

This research aims to implement deep learning techniques to determine fact and fake news in Indonesian language. The methods used are Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM). The stages of the research consisted of collecting data, labeling data, preprocessing data, word embedding, splitting data, forming CNN and LSTM models, evaluating, testing new input data and comparing evaluations of the established CNN and LSTM models. The Data are collected from a fact and fake news provider site that is valid, namely TurnbackHoax.id. There are 1786 news used in this study, with 802 fact and 984 fake news. The results indicate that the CNN and LSTM methods were successfully applied to determine fact and fake news in Indonesian language properly. CNN has an accuracy test, precision and recall value of 0.88, while the LSTM model has an accuracy test and precision value of 0.84 and a recall of 0.83. In testing the new data input, all of the predictions obtained by CNN are correct, while the prediction results obtained by LSTM have 1 wrong prediction. Based on the evaluation results and the results of testing the new data input, the model produced by the CNN method is better than the model produced by the LSTM method.

Author Biographies

Antonius Angga Kurniawan, Universitas Gunadarma

Fakultas Teknologi Informasi

Metty Mustikasari, Universitas Gunadarma

Fakultas Teknologi Informasi

References

Ananth, S., Radha, D. K., Prema, S., D., & Nirajan, K. (2019). Fake News Detection using Convolution Neural Network in Deep Learning. International Journal Of Innovative Research In Computer And Communication Engineering, 7(1).

CNNIndonesia. (2018a, October 1). VIDEO: Warga Panik Akibat Hoaks Gempa-Tsunami di Sulbar. https://www.cnnindonesia.com/nasional/20181001165424-24-334695/video-warga-panik-akibat-hoaks-gempa-tsunami-di-sulbar

CNNIndonesia, R. (2018b, June 23). Upaya Negara Perangi Penyebaran Berita Palsu. https://www.cnnindonesia.com/teknologi/20180623085115-185-308291/upaya-negara-perangi-penyebaran-berita-palsu

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. In MIT Press. MIT Press. https://www.deeplearningbook.org/

Haryalesmana, D. (2016). ID-Stopwords/id.stopwords.02.01.2016.txt at master · masdevid/ID-Stopwords · GitHub. https://github.com/masdevid/ID-stopwords/blob/master/id.stopwords.02.01.2016.txt

Hasil Survey Wabah HOAX Nasional 2019 | Website Masyarakat Telematika Indonesia. (2019). https://mastel.id/hasil-survey-wabah-hoax-nasional-2019/

Hossin, M., & Sulaiman, M. N. (2015). A Review on Evaluation Metrics for Data Classification Evaluations. International Journal of Data Mining & Knowledge Management Process. https://doi.org/10.5121/ijdkp.2015.5201

Kementerian Komunikasi dan Informatika. (2020, February 15). https://www.kominfo.go.id/content/detail/24415/hoaks-satu-warga-di-toraja-utara-terjangkit-virus-corona/0/laporan_isu_hoaks

Li, Y., & Yang, T. (2017). Word Embedding for Understanding Natural Language: A Survey (Vol. 26). https://doi.org/10.1007/978-3-319-53817-4

Mediani, M. (2017, August 28). Saracen: Bisnis Hoax Hancurkan Lawan Politik. https://www.cnnindonesia.com/nasional/20170828063335-32-237676/saracen-bisnis-hoax-hancurkan-lawan-politik

Putri, T. T. A., S, H. W., Sitepu, I. Y., Sihombing, M., & Silvi. (2019). Analysis and Detection of Hoax Contents in Indonesian News Based on Machine Learning. Journal Of Informatics Pelita Nusantara.

Rahutomo, F., Pratiwi, I. Y. R., & Ramadhani, D. M. (2019). Eksperimen Naïve Bayes Pada Deteksi Berita Hoax Berbahasa Indonesia. JURNAL PENELITIAN KOMUNIKASI DAN OPINI PUBLIK. https://doi.org/10.33299/jpkop.23.1.1805

Tentang Kami - TurnBackHoax. (2016). https://turnbackhoax.id/tentang-kami/

Verma, P., & Khandelwal, B. (2019). Word embeddings and its application in deep learning. International Journal of Innovative Technology and Exploring Engineering. https://doi.org/10.35940/ijitee.K1343.0981119

Zheng, A. (2015). Evaluating Machine Learning Models - O’Reilly Media. In Oreilly.

Downloads

Published

2020-12-31