Analisis Perbandingan Model Matrix Factorization dan K-Nearest Neighbor dalam Mesin Rekomendasi Collaborative Berbasis Prediksi Rating


  • Janny Eka Prayogo University of Singaperbangsa Karawang
  • Aries Suharso University of Singaperbangsa Karawang
  • Adhi Rizal University of Singaperbangsa Karawang



Rating, Recommendation Engine, Collaborative Filtering, Matrix Factorization, K-Nearest Neighbor


Rating is a form of assessment of the likes or dislikes of a user or customer for an item. Where the higher the rating number given, the item is preferred by customers or users. In the recommendation engine, a set of ratings can be predicted and used as an object to generate a recommendation by the Collaborative Filtering method. In the Collaborative Filtering method, there is a rating prediction model, namely the Matrix Factorization and K-Nearest Neighbor models. This study analyzes the comparison of the two prediction models based on the value of Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and the prediction results generated using the movielens film rating dataset. From the analysis and testing results, it was found that MAE = 0.6371 and RMSE = 0.8305 for the Matrix Factorization model, while MAE = 0.6742 and RMSE = 0.8863 for the K-Nearest Neighbor model. The best model is Matrix Factorization because the MAE and RMSE values are lower than the K-Nearest Neighbor model and have the closest predicted rating results from the original rating value.


Abraham, S., & Rahayu, Y. D. (2017). Sistem Rekomendasi Artikel Berita Menggunakan Metode K-Nearest Neighbor Berbasis Website. In Prosiding SENSEI 2017 (pp. 179–187). Jember: Universitas Muhammadiyah Jember.

Adellya, A., Devi, P., & Tonara, D. B. (2015). Rancang Bangun Recommender System dengan Menggunakan Metode Collaborative Filtering untuk Studi Kasus Tempat Kuliner di Surabaya. JUISI Jurnal Informatika Dan Sistem Informasi, 01(02), 102–112.

Alasadi, S. A., & Bhaya, W. S. (2017). Review of Data Preprocessing Techniques. Journal of Engineering and Applied Sciences, 12(16), 4102–4107.

Amatriain, X., Jaimes, A., Oliver, N., & Pujol, J. M. (2011). Recommender Systems Handbook Chapter 2 Data Mining Methods for Recommender Systems. Boston: Springer US.

Bokde, D. K., Girase, S., & Mukhopadhyay, D. (2015). Matrix Factorization Model in Collaborative Filtering Algorithms?: A Survey ScienceDirect Matrix Factorization Model in Collaborative Filtering Algorithms?: A Survey. Procedia Computer Science, 49, 136–146.

Cui, B. (2017). Design and Implementation of Movie Recommendation System Based on Knn Collaborative Filtering Algorithm. In The 4th Annual International Conference on Information Technology and Applications (ITA 2017) (Vol. 04008, pp. 8–12). Guangzhou: ITM Web Of Conforences.

Krishnamurty, S., Nurjanah, D., & Rismala, R. (2017). Sistem Rekomendasi Pada Buku Dengan Menggunakan Tags and Latent Factors. In e-Proceeding of Engineering (Vol. 4, pp. 4695–4701). Bandung: Universitas Telkom.

Li, H., Liu, Y., Qian, Y., Mamoulis, N., Tu, W., & Cheung, D. W. (2019). HHMF: hidden hierarchical matrix factorization for recommender systems. Data Mining and Knowledge Discovery, 33(6), 1548–1582.

Prasetya, C. S. D. (2017). Sistem Rekomendasi Pada E-Commerce Menggunakan K-Nearest Neighbor. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 4(3), 194–200.

Sorde, R., & Deshmukh, S. (2015). Comparative Study on Approaches of Recommendation Systems. International Journal of Computer Applications, 118(2), 753–764.

Syahrani, M. A., Setiawan, E. B., & Suryani, S. (2015). Analisis Perbandingan Sistem Rekomendasi dengan Faktorisasi Matriks dan. In SNIKTI (Seminar Nasional Ilmu Komputasi dan Teknik Informatika) (pp. 50–62). Bandung: Universitas Telkom.