Perbandingan Kinerja Algoritma Klasifikasi Naive Bayes, Support Vector Machine (SVM), dan Random Forest untuk Prediksi Ketidakhadiran di Tempat Kerja
DOI:
https://doi.org/10.32493/informatika.v5i4.7575Keywords:
Data Mining, Clasification, Naïve Bayes, Super Vector Machine, Random ForestAbstract
Absence is a problem for the company. Absenteeism is defined as a task that is assigned to an individual, but the individual cannot complete the task when he is not present. Absence from work is influenced by many factors, including mismatched working hours, job demand and other factors such as serious accidents / illness, low morale, poor working conditions, boredom, lack of supervision, personal problems, insufficient nutrition, transportation problems, stress, workload, and dissatisfaction. The purpose of this study is to predict absenteeism at work based on the Absenteeism at work dataset obtained from the UCI Machine Learning repository site using the Weka 3.8 application and the Naïve Bayes algorithm, Support Vector Machine (SVM), and Random Forest. In the results of the study, the Random Forest algorithm obtained the highest accuracy, precision, and recall values compared to the Naïve Bayes and SVM algorithms, which resulted in an accuracy value of 99.38%, 99.42% precision and a recall of 99.39%.
References
Cendana, M., Dian, S., & Permana, H. (2019). Analisis Perbandingan Algoritma Naive Bayes , J48 , Dan Random Forest Tree Dalam Peningkatan Loyalitas Pelanggan Umkm Dengan Voucher Belanja, 11(2), 140–145.
Derisman. (2020). Perbandingan Kinerja Algoritma Untuk Prediksi Penyakit Jantung Dengan Teknik Data Mining, 4(1), 84–88.
Feblian, D., Daihani, D. U., Magister, M., Industri, T., Industri, F. T., Trisakti, U., Trisakti, U. (2017). Implementasi Model Crisp-Dm Untuk Menentukan Sales, 1–12.
Fitri. (2017). Pengaruh Intensi Turnover Dan Ketidakhadiran Terhadap Kinerja Pegawai Dinas Pendidikan Dki Jakarta Mutiara Annisa Fitri. Manajemen Pendidikan, (52), 125–138.
Hidayati, N., Rizmayanti, A. I., Bunga, C., Dewi, S., & Fatmasari, R. (2020). Penerapan Algoritma Klasterisasi Dan Klasifikasi Pada Tingkat Kepentingan Sistem Pembelajaran Di Universitas Terbuka, 8(2), 134–142.
Mardhiyah Et Al. (2020). Jurnal Teknologia Klasifikasi Untuk Memprediksi Pembayaran Kartu Kredit Macet Jurnal Teknologia, 3(1), 91–101.
Martiniano, A., Ferreira, R. P., & Produção, P. E. De. (2012). Application Of A Neuro Fuzzy Network In Prediction Of Absenteeism At Work.
Nugroho, S., & Emiliyawati, N. (2017). Sistem Klasifikasi Variabel Tingkat Penerimaan Konsumen Terhadap Mobil Menggunakan Metode Random Forest, 9(1).
Prajarini, D. (2016). Perbandingan Algoritma Klasifikasi Data Mining Untuk Prediksi Penyakit Kulit, 1(3), 1–5.
Pratama, A., Wihandika, R. C., & Ratnawati, D. E. (2018). Implementasi Algoritme Support Vector Machine ( Svm ) Untuk Prediksi Ketepatan Waktu Kelulusan Mahasiswa, 2(4), 1704–1708.
Rahmadi, M., Kaurie, F., & Susanti, T. (2020). Uji Akurasi Dataset Pasien Pasca Operasi Menggunakan Algoritma Naïve Bayes Menggunakan Weka Tools, 7(1), 134–139. Https://Doi.Org/10.30865/Jurikom.V7i1.1761
Septiani, W. D. (2017). Komparasi Metode Klasifikasi Data Mining Algoritma C4.5 Dan Naive Bayes Untuk Prediksi Penyakit Hepatitis, 13(1), 76–84.
Setiani & Martono. (2018). Pengaruh Konflik Pekerjaan-Keluarga, Persepsi Hukuman Organisasi Dan Kepuasan Kerja Pada Ketidakhadiran Pekerja Wanita Bagian Produksi Pt Hyup Sung Indonesia. Management Analysis Journal, 7(1), 90–97.
Setiyorini, T. &, & Asmono, R. T. (2018). Komparasi Metode Decision Tree , Naive Bayes Dan K-Nearest Neighbor Pada Klasifikasi Kinerja Siswa, 15(2), 85–92.
Utomo, D. P. (2020). Analisis Komparasi Metode Klasifikasi Data Mining Dan Reduksi Atribut Pada Data Set Penyakit Jantung, 4(April), 437–444. Https://Doi.Org/10.30865/Mib.V4i2.2080
Vignoli, M., Guglielmi, D., Bonfiglioli, R., & Saverio, F. (2015). How Job Demands Affect Absenteeism?? The Mediating Role Of Work – Family Conflict And Exhaustion. Https://Doi.Org/10.1007/S00420-015-1048-8
Yusuf, B., Qalbi, M., Dwitawati, I., & Ellyadi, M. (2020). Implementasi Algoritma Naive Bayes Dan Random Forest Dalam Memprediksi Prestasi Akademik Mahasiswa Universitas Islam Negeri Ar-Raniry, 4, 50–58.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Jurnal Informatika Universitas Pamulang have CC-BY-NC or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities, Jurnal Informatika Universitas Pamulang recognize that free access is better than priced access, libre access is better than free access, and libre under CC-BY-NC or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
Jurnal Informatika Universitas Pamulang is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
YOU ARE FREE TO:
- Share : copy and redistribute the material in any medium or format
- Adapt : remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms