Perbandingan Metode KNN, Decision Tree, dan Naïve Bayes Terhadap Analisis Sentimen Pengguna Layanan BPJS

Authors

  • Rani Puspita Bina Nusantara University
  • Agus Widodo Bina Nusantara University

DOI:

https://doi.org/10.32493/informatika.v5i4.7622

Keywords:

Sentiment Analysis, BPJS, Twitter, Data Mining

Abstract

BPJS is really helpful because one of its goal is to provide good service for the member in terms of healthiness. But, when there’s many people using the service, then it will cause more pros and contras. Therefore, researcher will be doing sentiment analysis in the field of data mining towards bpjs users on social media Twitter as much as 1000 data that later will be filtered to be 903 data because there are some data that has been duplicated. Researchers used the KNN, Decision Tree, and Naïve Bayes methods to compare the accuracy of the three methods. Researchers used the RapidMiner version 9.7.2 tools. The results showed that the sentiment analysis of Twitter data on BPJS services using the KNN method reached an accuracy level of 95.58% with class precision for pred. negative is 45.00%, pred. positive is 0.00%, and pred. neutral is 96.83%. Then the Decision Tree method the accuracy rate reaches 96.13% with the precision class for pred. negative is 55.00%, pred. positive is 0.00%, and pred. neutral is 97.28%. And the last one is the Naïve Bayes method which achieves 89.14% accuracy with precision class for pred. negative is 16.67%, pred. positive was 1.64%, and pred. neutral is 98.40%.

Author Biographies

Rani Puspita, Bina Nusantara University

Computer Science Department

Agus Widodo, Bina Nusantara University

Computer Science Department

References

Buntoro, G. A. (2017). Analisis Sentimen Calon Gubernur DKI Jakarta 2017 di Twitter. Journal of Information Technology, 1(1), 32–41.

Cahyaningrum, N. I., Fatima, D. W. Y., Kusuma, W. A., Ramadhani, S. A., Destanto, M. R., & Nooraeni, R. (2020). Analysis of User Sentiment of Twitter to Draft KUHP. Jurnal Matematika, Statistika Dan Komputasi, 16(3), 273. https://doi.org/10.20956/jmsk.v16i3.8239

Cahyanti, D., Rahmayani, A., & Ainy, S. (2020). Analisis Performa Metode KNN Pada Dataset Pasien Pengidap Kanker Payudara. 1(2), 39–43.

Fitriyyah, S. N. J., Safriadi, N., & Pratama, E. E. (2019). Analisis Sentimen Calon Presiden Indonesia 2019 dari Media Sosial Twitter Menggunakan Metode Naive Bayes. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 5(3), 279. https://doi.org/10.26418/jp.v5i3.34368

Linda, L., Haskas, Y., & Kadrianti, E. (2020). Perbedaan Persepsi Pengguna Jasa BPJS Dan Non BPJS (Umum) Tentang Kualitas Pelayanan Keperawatan Dirsud Timika-Papua. 15.

Nurdin, A. D. (2017). Penerapan Data Mining Untuk Menganalisis Penjualan Barang Dengan Menggunakan Metode Apriori Pada Supermarket Sejahtera Lhokseumawe. Astika, D., Studi, P., Informatika, T., & Malikussaleh, U., Vol. 6 No.

Sari, R. (2020). Analisis Sentimen Pada Review Objek Wisata Dunia Fantasi Menggunakan Algoritma K-Nearest Neighbor (K-Nn). EVOLUSI?: Jurnal Sains Dan Manajemen, 8(1), 10–17. https://doi.org/10.31294/evolusi.v8i1.7371

Sarimuddin, S., Sari, J. Y., Mail, M., Masalu, M. A., Aristika, R. S., & Nurfagra, N. (2020). Klasifikasi Data Aging Tunggakan Nasabah Menggunakan Metode Decision Tree Pada ULaMM Unit Kolaka. INFORMAL: Informatics Journal, 5(1), 26. https://doi.org/10.19184/isj.v5i1.16964

Sinaga, L. M., Sawaluddin, & Suwilo, S. (2020). Analysis of classification and Naïve Bayes algorithm k-nearest neighbor in data mining. IOP Conference Series: Materials Science and Engineering, 725(1). https://doi.org/10.1088/1757-899X/725/1/012106

Utami, I. (2020). Analisis Sistem Informasi Banjir Berbasis Media Twitter. 9(1), 67–72.

Zhang, W., Chen, X., Liu, Y., & Xi, Q. (2020). A Distributed Storage and Computation k-Nearest Neighbor Algorithm Based Cloud-Edge Computing for Cyber-Physical-Social Systems. IEEE Access, 8, 50118–50130. https://doi.org/10.1109/ACCESS.2020.2974764

Downloads

Published

2020-12-31