Classification of Sad Emotions and Depression Through Images Using Convolutional Neural Network (CNN)

Authors

  • Muhammad Fathur Prayuda Universitas Trilogi

DOI:

https://doi.org/10.32493/informatika.v6i1.8433

Keywords:

CNN, Depression, Deep Learning

Abstract

The human face has various functions, especially in expressing something. The expression shown has a unique shape so that it can recognize the atmosphere of the feeling that is being felt. The appearance of a feeling is usually caused by emotion. Research on the classification of emotions has been carried out using various methods. For this study, a Convolutional Neural Network (CNN) method was used which serves as a classifier for sad and depressive emotions. The CNN method has the advantage of preprocessing convolution so that it can extract a hidden feature in an image. The dataset used in this study came from the Facial expression dataset image folders (fer2013) where the dataset used for classification was taken with a ratio of 60% training and 40% validation with the results of the trained model of 60% total loss and 68% test accuracy.

References

Alamsyah, D., & Pratama, D. (2020). Implementasi Convolutional Neural Networks (CNN) untuk Klasifikasi Ekspresi Citra Wajah pada FER-2013 Dataset. JurTI (Jurnal Teknologi Informasi), 4(2), 350-355.

Arrofiqoh, E. N., & Harintaka. (2018). Implementasi Metode Convolutional Neural Network Untuk Klasifikasi Tanaman Pada Citra Resolusi Tinggi. Geomatika, 24(2), 61-68.

Brathwaite, R., Rocha, T. B.-M., Kieling, C., Kohrt, B. A., Mondelli, V., Adewuya, A. O., & Fisher, H. L. (2020). Predicting the risk of future depression among school-attending adolescents in Nigeria using a model developed in Brazil. Psychiatry Research, 113511.

Nugroho, P. A., Fenriana, I., & Arijanto, R. (2020). Implementasi Deep Learning Menggunakan Convolutional Neural Network (CNN) Pada Ekspresi Manusia. Algor, 2(1), 12-20.

Nurlita, R., & Nadiroh. (2019). Tingkat Depresi di Kalangan Remaja akibat Faktor.

Paliwang, A. A., Septian, M. R., Cahyanti, M., & Swedia, E. R. (2020). Klasifikasi Penyakit Tanaman Apel Dari Citra Daun Dengan Convolutional Neural Network. Sebatik, 24(2), 207-212.

Praharso, N. F., Pols, H., & Tiliopoulos, N. (2020). Mental health literacy of Indonesian health practitioners and implications for mental health system development. Asian Journal of Psychiatry, 102168.

Prasetyawan, D., & ‘Uyun, S. (2020). Penentuan Emosi pada Video dengan Convolutional Neural Network. JISKA (Jurnal Informatika Sunan Kalijaga), 5(1), 23-35.

Septian, R., Saputra, D. I., & Sambasri, S. (2020). Klasifikasi Emosi Menggunakan. Prosiding-Seminar Nasional Teknik Elektro UIN Sunan Gunung Djati Bandung, 53-62.

Syahputra, M. I., & Wibowo, A. T. (2020). Klasifikasi Genus Tanaman Anggrek Berdasarkan Citra Kuntum Bunga Menggunakan Metode Convolutional Neural Network (Cnn). eProceedings of Engineering, 7(2)., 8015.

Yusuf, A., Wihandika, R. C., & Dewi, C. (2020). Klasifikasi Emosi Berdasarkan Ciri Wajah Menggunakan Convolutional Neural Network. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN, 2548, 964X.

Downloads

Published

2021-03-31