Penerapan Algoritma Convolutional Neural Network dalam Klasifikasi Telur Ayam Fertil dan Infertil Berdasarkan Hasil Candling

Authors

  • Muhammad Rizky Firdaus Universitas Trilogi

DOI:

https://doi.org/10.32493/informatika.v5i4.8556

Keywords:

Fertile Eggs, Infertile Eggs, Convolutional Neural Network, Deep Learning

Abstract

Fertile chicken eggs are eggs that can hatch because these eggs have a development in the form of dots of blood and blood vessels or can be called an embryo, while infertile chicken eggs are a type of egg that cannot be hatched because there is no embryo development in the hatching process. Inspection of infertile chicken eggs must be carried out especially for breeders who will carry out the selection and transfer of fertile chicken eggs and infertile chicken eggs. However, currently, the selection of fertile and infertile chicken eggs is still using a less effective way, namely only by looking at the egg shell or called candling, this process is certainly less accurate to classify which eggs are fertile and infertile eggs because not all breeders are able to see the results of the eggs properly. candling so that the possibility of prediction errors. Therefore, in this study, a classification of fertile chicken eggs and infertile chicken eggs will be carried out based on candling results using the Convolutional Neural Network method. From the results of the classification carried out, the percentage of accuracy obtained for the classification of fertile and infertile chicken eggs is 98% and an error of 5%.

Author Biography

Muhammad Rizky Firdaus, Universitas Trilogi

Fakultas Industri Kreatif dan Telematika

References

Arini, N. F., Ubaidillah, A., Wibisono, K. A., & Ulum, M. (2020). Identifikasi embrio dalam telur berbasis image processing. Jurnal Teknik Elektro Dan Komputasi (ELKOM), 2(1), 11–19.

Diantoro, A., & Santoso, I. B. (2017). Classification of Egg Fertility on the Image of Kampong Chicken Egg Using the Frequency Distribution Feature and Naive Bayes Classifier Algorithm’s. Proceedings of the International Conference on Green Technology, 8(1), 446–453.

Felix, F., Wijaya, J., Sutra, S. P., Kosasih, P. W., & Sirait, P. (2020). Implementasi Convolutional Neural Network Untuk Identifikasi Jenis Tanaman Melalui Daun. Jurnal SIFO Mikroskil, 21(1), 1–10.

Ilahiyah, S., & Nilogiri, A. (2018). Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network. JUSTINDO (Jurnal Sistem Dan Teknologi Informasi Indonesia), 3(2), 49–56.

Isnawati, I. (2018). Klasifikasi Citra Candling Telur Ayam Kampung Dengan Metode LVQ.

Maimunah, M., & Rokhman, T. (2018). Klasifikasi Penurunan Kualitas Telur Ayam Ras Berdasarkan Warna Kerabang Menggunakan Support Vector Machine. INFORMATICS FOR EDUCATORS AND PROFESSIONAL: Journal of Informatics, 3(1), 43–52.

Nawawi, M. Z., Rahmad, R., & Syahputra, M. (2015). Klasifikasi telur fertil dan infertil menggunakan jaringan saraf tiruan multilayer perceptron berdasarkan ekstraksi fitur warna dan bentuk. Jurnal Teknologi Informasi Dan Komunikasi, 4(2), 100–109.

Nurdiyah, D., & Muwakhid, I. A. (2016). Perbandingan Support Vector Machine Dan K-Nearest Neighbor Untuk Klasifikasi Telur Fertil dan Infertil Berdasarkan Analisis Texture GLCM. Jurnal Transformatika, 13(2), 29–34.

Nurdiyah, D., Santosa, S., & Pramunendar, R. A. (2015). Klasifikasi Citra Telur Fertil dan Infertil Dengan Analisis Tekstur Gray Level Co-Occurence Matrix dan Support Vector Machine. Cyberku Journal, 11(2), 116–126.

O’Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. ArXiv Preprint ArXiv:1511.08458.

Prasmatio, R. M., Rahmat, B., & Yuniar, I. (2020). Deteksi dan Pengenalan Ikan Menggunakan Algoritma Convolutional Neural Network. Jurnal Informatika Dan Sistem Informasi (JIFoSI), 1(2), 510–521.

Putra, I. (2016). Klasifikasi citra menggunakan convolutional neural network (CNN) pada caltech 101. Institut Teknologi Sepuluh Nopember.

Wulandari, I., Yasin, H., & Widiharih, T. (2020). Klasifikasi CItra Digital Bumbu dan Rempah dengan Algoritma Convolutional Neural Network. Jurnal Gaussian, 9(3), 273–282.

Downloads

Published

2020-12-31