Fuzzy Reasoning untuk Analisa Keterkaitan Hubungan Jurusan di Sekolah Menengah Atas dengan Kemampuan Programming Mahasiswa

Authors

  • Sri Mulyati Universitas Pamulang
  • Endar Nirmala Universitas Pamulang

DOI:

https://doi.org/10.32493/informatika.v6i3.8866

Keywords:

Programming, Fuzzy, Reasoning, Mamdani

Abstract

Programming is one of the skills which is very important today, especially in the Internet of Things (IoT) technology. Applications are the top layer of IoT, so the capability of application creation is most important. The basis for making applications is an algorithm related to logic, namely the ability to solve problems. Currently, students' logic and programming skills are still very lacking by a percentage of 10% - 15% per class for a total of 35 people. Secondary education background is a provision for students in the college process. And students' secondary education backgrounds vary, such as science, social studies, accounting, automotive, RPL, Multimedia, TKJ, etc. If the informatics study program wants to get graduates with good abilities, it is necessary to consider a suitable educational background. The above is the basis of this research, namely knowing the influence of high school students' majors on their programming abilities. The method for this problem uses Fuzzy Reasoning. This method can solve problems that are uncertain or fuzzy with an approach to existing problems or data. The stages of the method are input (crisp), fuzzification, inference, defuzzification, and output (crisp). The data to be used are majors and two grades from subjects related to logic according to majors. The algorithm that be used in the Fuzzy Method is Mamdani. The output of the defuzzification is the value level of the majors in the Hight Scholl or Vocational School. Those are the order of most suitable for the Informatics Engineering Study Program (IT Study Program). The values obtained are processed using fuzzy similarity to get the similarity value or case suitability. The application of the method in this study resulted in the suitability value of the high school / vocational majors with the informatics engineering study program of 51.97%. It means that the student background is not suitable for the informatics engineering study program. While the accuracy rate is 63.46%.

Author Biography

Sri Mulyati, Universitas Pamulang

Google Scholar: 6RvCD7cAAAAJ

SINTA ID: 6655096

References

Abdiansah, A. (2013). Fuzzy Case-Based Reasoning: Implementasi Logika Fuzzy Pada Case-Based Reasoning. Jurnal Generic, 8(1), 169–180.

Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54(15), 2787–2805. https://doi.org/10.1016/j.comnet.2010.05.010

Besari, A. R. A., Wobowo, I. K., Sukaridhoto, S., Setiawan, R., & Rizqullah, M. R. (2017). Preliminary design of mobile visual programming apps for Internet of Things applications based on Raspberry Pi 3 platform. Proceedings - International Electronics Symposium on Knowledge Creation and Intelligent Computing, IES-KCIC 2017, 2017-January, 50–54. https://doi.org/10.1109/KCIC.2017.8228460

Hasanuddi, R. S., Isnawati, Saputra, R. A., & Statiswaty. (2019). Sistem Kontrol dan Monitoring Hidroponik Secara Real Time Menggunakan Metode Fuzzy Inference System Model Tsukamoto. SemanTIK.

Irsan, M. Y., Kasau, M. I., & Simbolon, I. P. (2019). Penggunaan Fuzzy Logic & Metode Mamdani untuk Menghitung Pembelian, Penjualan dan Persediaan . JAAF (Journal of Applied Accounting and Finance) .

Izzah, A., & Widyastuti, R. (2016). Prediksi Kelulusan Mata Kuliah Menggunakan Hybrid Fuzzy Inference System. Register: Jurnal Ilmiah Teknologi Sistem Informasi, 2(2), 60. https://doi.org/10.26594/r.v2i2.548

Krishnamurthy, J., & Maheswaran, M. (2016). Programming frameworks for Internet of Things. In Internet of Things: Principles and Paradigms. https://doi.org/10.1016/B978-0-12-805395-9.00005-8

Mustafidah, H., & Aryanto, D. (2012). Sistem Inferensi Fuzzy untuk Memprediksi Prestasi Belajar Mahasiswa Berdasarkan Nilai Ujian Nasional, Tes Potensi Akademik, dan Motivasi Belajar. JUITA.

Santiari, P. L. (2016). Penggunaan Metode Fuzzy Dalam Penilaian Tingkat Kemampuan Non-Akademik Mahasiswa Melalui Satuan Kredit Kegiatan Mahasiswa. Jurnal Teknologi Informasi Dan Ilmu Komputer, 3(4), 253. https://doi.org/10.25126/jtiik.201634182

Subbotin, I. Y., & Voskoglou, M. G. (2015). Applications of fuzzy logic to systems’ modelling. Research Methods: Concepts, Methodologies, Tools, and Applications, (March 2014), 1277–1291. https://doi.org/10.4018/978-1-4666-7456-1ch055

Sutoyo, M. N., & Sumpala, A. T. (2016). Penerapan Fuzzy C-Means untuk Deteksi Dini Kemampuan Penalaran Matematis. Scientific Journal of Informatics, 2(2), 129. https://doi.org/10.15294/sji.v2i2.5080

Zafar, S., & Farooq, M. S. (2019). A graphical methodology to promote programming language concepts in novice. 3rd International Conference on Innovative Computing, ICIC 2019, (Icic). https://doi.org/10.1109/ICIC48496.2019.8966727

Downloads

Published

2021-09-30